US009186248B2 ## (12) United States Patent Paniagua et al. (10) Patent No.: US 9,186,248 B2 (45) **Date of Patent:** Nov. 17, 2015 ### (54) PERCUTANEOUSLY IMPLANTABLE REPLACEMENT HEART VALVE DEVICE AND METHOD OF MAKING SAME (75) Inventors: **David Paniagua**, Houston, TX (US); Eduardo Induni, Alajuela (CR); R. David Fish, Houston, TX (US) (73) Assignee: COLIBRI HEART VALVE LLC, Broomfield, CO (US) (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 856 days. (21) Appl. No.: 13/367,252 (22) Filed: Feb. 6, 2012 (65) Prior Publication Data US 2012/0310041 A1 Dec. 6, 2012 #### Related U.S. Application Data (60) Continuation of application No. 12/228,192, filed on Aug. 8, 2008, now Pat. No. 8,109,995, which is a division of application No. 10/887,688, filed on Jul. 10, 2004, now Pat. No. 8,308,797, which is a continuation-in-part of application No. 10/037,266, filed on Jan. 4, 2002, now abandoned, application No. 13/367,252, which is a continuation of application No. 10/887,688, filed on Jul. 10, 2004, now Pat. No. 8,308,797, which is a continuation-in-part of application No. 10/037,266, filed on Jan. 4, 2002. (51) Int. Cl. A61F 2/24 A61B 8/12 (2006.01) (2006.01) (Continued) (52) U.S. Cl. (2013.01); A61F 2/2439 (2013.01); A61F 2002/9534 (2013.01); A61F 2210/0014 (2013.01); A61F 2220/0008 (2013.01); A61F 2220/0008 (2013.01); A61F 2220/0016 (2013.01); A61F 2220/0078 (2013.01); A61F 2240/001 (2013.01); A61F 2250/0039 (2013.01); A61L 27/3604 (2013.01); A61L 27/3683 (2013.01); A61L 27/3687 (2013.01); (Continued) (58) Field of Classification Search None See application file for complete search history. (56) References Cited U.S. PATENT DOCUMENTS 3,014,024 A 12/1961 Lieberman et al. 3,029,819 A 4/1962 Edward (Continued) #### FOREIGN PATENT DOCUMENTS EP 1603493 12/2005 EP 2000115 5/2011 (Continued) OTHER PUBLICATIONS Affidavit of Dr. Paolo Angelini, M.D., signed Aug. 25, 2009. (Continued) Primary Examiner — Thomas J Sweet Assistant Examiner — Cheryl Miller (74) Attorney, Agent, or Firm — Fox Rothschild LLP (57) ABSTRACT A method of making a replacement heart valve device whereby a fragment of biocompatible tissue material is treated and soaked in one or more alcohol solutions and a solution of glutaraldehyde. The dried biocompatible tissue material is folded and rehydrated in such a way that forms a two- or three-leaflet/cusp valve without affixing of separate cusps or leaflets or cutting slits into the biocompatible tissue material to form the cusps or leaflets. After the biocompatible tissue material is folded, it is affixed at one or more points on the outer surface to the inner cavity or a stent. #### 9 Claims, 12 Drawing Sheets ## US 9,186,248 B2 Page 2 | (51) | Int. Cl. | | | 5,047,050 | | | Arpesani | |------|------------------|----------------|--------------------------------------|------------------------|---|---------|-------------------------------------| | | A61F 2/95 | | (2013.01) | 5,052,771 | | | Williams et al. | | | A61L 27/36 | | (2006.01) | 5,061,277 | | | Carpentier et al. | | | | | (2000.01) | 5,080,660 | | 1/1992 | Robicsek | | (52) | U.S. Cl. | | | 5,139,515
5,163,955 | | | Love et al. | | | CPC A6 | 51L27/ | /3691 (2013.01); Y10S 623/917 | 5,171,273 | | | Silver et al. | | | (| (2013 | .01); <i>Y10T 29/49412</i> (2015.01) | 5,226,889 | | | Sheiban | | | | | ,, | 5,261,878 | | 11/1993 | Galindo | | (56) | Re | eferen | ces Cited | 5,282,847 | | | Trescony et al. | | (50) | | | | 5,326,370 | | | Love et al. | | | U.S. PAT | ΓENT | DOCUMENTS | 5,326,371 | | | Love et al. | | | | | | 5,332,402
5,336,616 | | | Teitelbaum
Livesey et al. | | | 3,057,775 A 10 | /1962 | Rendon | 5,344,442 | | 9/1994 | | | | | | Jeckel | 5,360,443 | | | Barone et al. | | | | | High et al. | 5,374,539 | | | Nimni et al. | | | | /1968 | | 5,376,110 | | 12/1994 | Tu et al. | | | ' ' | | Kischer et al.
Braun | 5,383,927 | A | | De Goiceochea et al. | | | | | Wesolowski | 5,411,552 | | | Andersen et al. | | | | | Moulopoulos | 5,413,601 | | | Keshelava | | | | | Edwards et al. | 5,449,384 | | 9/1995 | Johnson | | | 3,878,565 A 4 | | Sauvage | 5,476,506
5,480,424 | | 1/1996 | | | | | | Liebig | 5,484,444 | | | Braunschweiler et al. | | | | | Hancock et al. | 5,489,297 | | 2/1996 | | | | | | Dardik et al. | 5,500,015 | | 3/1996 | | | | | | Angell et al. | 5,509,930 | A | 4/1996 | Love | | | | | Hoffman, Jr. et al.
Sawyer | 5,522,879 | | | Scopelianos | | | | | Angell et al. | 5,522,881 | | 6/1996 | | | | | | Carpentier et al. | 5,545,215 | | 8/1996 | | | | | | Boretos et al. | 5,549,664
5,549,666 | | | Hirata et al.
Hara et al. | | | 4,060,081 A 11 | /1977 | Yannas et al. | 5,554,184 | | | Machiraju | | | | | Sawyer | 5,558,875 | | 9/1996 | Wang 424/422 | | | | | Ionescu et al. | 5,571,170 | | 11/1996 | Palmaz et al. | | | | | Schechter
Bokros et al. | 5,571,173 | | 11/1996 | | | | | | Batten | 5,571,174 | | | Love et al. | | | | /1980 | | 5,578,071 | | 11/1996 | | | | | | Boretos et al. | 5,578,072
5,582,168 | | | Barone et al.
Samuels et al. | | | ' ' | | Nath et al. | 5,591,229 | | 1/1997 | | | | | | Boretos et al. | 5,634,928 | | | Fischell et al. | | | | | Gabbay 623/2.18 | 5,645,559 | | 7/1997 | Hachtman et al. | | | | /1981 | Brownlee et al. | 5,653,749 | | | Love et al. | | | | | Wright et al. | 5,683,451 | | | Lenker et al. | | | | | Pierce et al. | 5,713,953 | | | Vallana et al.
Mirsch, II et al. | | | | /1983 | Ionescu et al. | 5,728,152
5,733,299 | | | Sheiban et al. | | | ' ' | | Vallana et al. | 5,741,333 | | 4/1998 | | | | | | Ionescu et al. | 5,746,775 | | 5/1998 | Levy et al 8/94.11 | | | | /1984
/1984 | Holman et al. | 5,769,780 | | 6/1998 | Hata et al. | | | | | Totten et al. | 5,782,914 | | | Schankereli 435/325 | | | 4,517,687 A 5 | /1985 | Liebig et al. | 5,787,887 | | | Klingenbeck-Regn | | | | | Hood | 5,840,081
5,855,601 | | | Anderson et al.
Bessler et al. | | | 4,553,974 A * 11 | /1985 | Dewanjee 8/94.11 | 5,861,028 | | | Angell | | | | | Walter et al. | 5,862,806 | | | Cheung | | | | /1986 | | 5,876,448 | A | 3/1999 | Thompson et al. | | | | | Kensey
Komatsu et al. | 5,895,420 | A | | Mirsch, II et al. | | | | | Arru et al. | 5,957,949 | | | Leonhardt et al. | | | | | Hughes et al. | 5,961,539 | | | Northrup et al. | | | 4,743,231 A 5 | /1988 | Kay et al. | 5,961,549
5,972,030 | | | Nguyen et al.
Garrison et al. | | | | | Gabbay | 5,976,179 | | 11/1999 | | | | | | Walker et al. | 6,004,328 | | 12/1999 | | | | | | Freeman, Jr. | 6,004,330 | A | 12/1999 | Middleman et al. | | | | | Brendel et al. Dellon et al. | 6,010,531 | | | Donlon et al. | | | | | Shiber | 6,029,671 | A | | Stevens et al. | | | | /1990 | | 6,045,576 | | | Starr et al. | | | 4,966,604 A 10 | /1990 | Reiss | 6,053,938 | | | Goldmann et al. | | | | | Giradot | 6,091,984
6,102,944 | | | Perelman et al.
Huynh et al. | | | | | Shiber | 6,102,944 | | 9/2000 | | | | | | Smith et al. | 6,124,523 | | | Banas et al. | | | | | Shiber
Ginsburg | 6,125,852 | | | Stevens et al. | | | | | Leckrone | 6,126,686 | | | Badylak et al. | | | 5,032,128 A 7 | | Alonso | 6,129,756 | A | 10/2000 | Kugler | | | | | Samuels | 6,162,245 | A | 12/2000 | Jayaraman | | | | | | | | | | # US 9,186,248 B2 Page 3 | (56) Refe | rences Cited | 6,736,823 B2 | | Darios et al. | |---|--|-------------------------------|--------------------|---| | H.C. DATE | THE DOOL IN CONTEG | 6,764,510 B2 | | Vidlund et al.
Gordon et al. | | U.S. PATE | NT DOCUMENTS | 6,773,456 B1
6,773,457 B2 | | Ivancev | | 6 169 614 D1 1/20 | 01 Andaman et al | 6,790,229 B1 | | Berreklouw | | | 01 Andersen et al.
01 Dihn et al. | 6,792,979 B2 | | Konya et al. | | | 01 Wheatley et al. | 6,802,319 B2 | | Stevens et al. | | 6,174,327 B1 1/20 | 01 Mertens et al. | 6,802,806 B2 | | McCarthy et al. | | | 01 Chen | 6,821,297 B2
6,821,530 B2 | 11/2004 | Snyders
Koob et al. | | | 01 Bodnar
01 Simionescu et al. | 6,830,584 B1 | 12/2004 | | | | 01 Khosravi | 6,893,460 B2 | 5/2005 | Spenser et al. | | 6,231,602 B1 5/20 | 01 Carpentier et al. | 6,896,690 B1 | | Lambrecht et al. | | | 01 Jayaraman | 6,908,481 B2
6,913,608 B2 | | Cribier
Liddicoat et al. | | , , | 01 Inoue
01 Inoue | 6,916,338 B2 | | Speziali | | | 01 Peredo | 6,942,694 B2 | | Liddicoat et al. | | 6,264,691 B1 7/20 | 01 Gabbay | 6,951,571 B1 | | Srivastava | | | 01 Oz et al. | 6,961,123 B1
6,977,231 B1 | | Wang et al.
Matsuda | | | 01 Cox
01 Shimizu | 6,986,735 B2 | | Abraham et al. | | | 01 Duran et al 435/1.3 | 7,004,925 B2 | | Navia et al. | | 6,287,335 B1 9/20 | 01 Drasler | 7,008,763 B2 | | Cheung | | 6,293,970 B1 9/20 | 01 Wolfinbarger et al. | 7,011,688 B2
7,018,404 B2 | | Gryska et al.
Holmberg et al. | | | 01 McDermott et al. | 7,018,404 B2
7,018,406 B2 | | Seguin et al. | | | 01 Francis et al.
02 Lane et al. | 7,022,348 B2 | | Ketharananthan | | | 02 Deac et al. | 7,025,780 B2 | | Gabbay | | | 02 Lenker et al. | 7,037,333 B2 | | Myers et al.
Ruchti et al. | | | 02 Eberhardt | 7,039,446 B2
7,041,132 B2 | | Quijano et al. | | | 02 De Paulis
02 Duran et al. | 7,053,051 B2 | | Hendriks et al. | | | 02 McIlroy et al. | 7,060,092 B2 | | Kuribayashi et al. | | 6,358,284 B1 3/20 | 02 Fearnot et al. | 7,070,616 B2 | | Majercak et al. | | | 02 Rudakov et al. | 7,077,862 B2
7,084,082 B1 | | Vidlund et al.
Shimizu | | | 02 Atala et al.
02 Ekholm, Jr. et al. | 7,138,226 B2 | | Vincek et al. | | | 02 Gifford et al. | 7,153,324 B2 | | Case et al. | | 6,391,333 B1 5/20 | 02 Li et al. | 7,160,322 B2 | | Gabbay | | | 02 Vrba | 7,164,145 B2
7,166,570 B2 | 1/2007
1/2007 | Shakespeare
Hunter et al. | | | 02 Essenpries et al.
02 Garrison et al. | 7,189,259 B2 | | Simionescu et al. | | | 02 Wolfinbarger, Jr. et al. | 7,213,601 B2 | 5/2007 | |
| 6,440,167 B2 8/20 | 02 Shimizu | 7,214,242 B2
7,214,344 B2* | 5/2007 | Abraham et al. Carpentier et al 422/28 | | 6,458,153 B1 10/20 | 02 Bailey et al. | 7,214,344 B2 7,232,461 B2 | 6/2007 | | | | 02 Claeson et al.
02 Ashworth et al. | 7,261,732 B2 | 8/2007 | Justino | | 6,482,227 B1 11/20 | 02 Solovay | 7,289,211 B1 | 10/2007 | Walsh, Jr. et al. | | | 02 Norred | 7,309,461 B2
7,311,730 B2 | 12/2007
12/2007 | Kujawski et al. | | | 02 Eckmayer et al.
02 Fogarty et al. | 7,311,730 B2
7,318,998 B2 | | Goldstein et al. | | | 02 Greenhalgh | 7,329,279 B2 | 2/2008 | Haug et al. | | | 03 Duerig et al. | 7,331,993 B2 | 2/2008 | | | | 03 Vesely | 7,354,702 B2
RE40,404 E | | Dai et al.
Schmitt et al. | | | 03 Chen et al.
03 Snyders | 7,381,218 B2 | | Schreck | | | 03 Ekholm, Jr. et al. | 7,381,219 B2 | 6/2008 | Salahieh et al. | | | 03 Carpentier et al. | 7,399,315 B2 | 7/2008 | | | | 03 Koob et al. | 7,427,291 B2
7,431,725 B2 | | Liddicoat et al.
Stack et al. | | | 03 Wolfinbarger, Jr. et al.
03 White et al. | 7,468,073 B2 | | Johnson et al. | | | 03 Andersen et al. | 7,473,237 B2 | 1/2009 | Navia et al. | | 6,582,464 B2 6/20 | 03 Gabbay | 7,481,838 B2 | | Carpentier et al. | | | 03 Li et al. | 7,503,929 B2
7,510,571 B2 | 3/2009
3/2009 | Johnson et al.
Spiridigliozzi et al. | | | 03 Gabbay
03 Backman et al. | 7,510,571 B2 | 3/2009 | | | | 03 Butaric et al. | 7,524,330 B2 | 4/2009 | Berreklouw | | 6,652,577 B2 11/20 | 03 Gianotti | 7,556,646 B2 | 7/2009 | Yang et al. | | | 03 Bailey et al. | 7,566,343 B2
7,585,321 B2 | 7/2009 | Jenson et al.
Cribier | | 6,666,886 B1 12/20
6,676,698 B2 1/20 | 03 Tranquillo et al.
04 McGuckin, Jr. | 7,604,661 B2 | | Pavcnik et al. | | | 04 Ouriel et al. | 7,618,446 B2 | 11/2009 | Andersen et al. | | 6,682,559 B2 1/20 | 04 Myers et al. | 7,622,276 B2 | 11/2009 | Cunanan et al. | | | 04 Dimatteo et al. | 7,628,805 B2 | 12/2009 | | | | 04 Dai et al. | 7,648,676 B2 | | Mills et al. | | | 04 Liddicoat et al.
04 Cox | 7,670,368 B2
7,708,775 B2 | | Hill et al.
Rowe et al. | | | 04 Cox | 7,758,632 B2 | | Hojeibane et al. | | | 04 Yang et al. | 7,780,722 B2 | | Thielen et al. | # US 9,186,248 B2 Page 4 | (56) | Referen | ices Cited | 2005/0169958 A1 | | Hunter et al.
Hunter et al. | |-------------------------------------|---------|--|------------------------------------|--------|--| | 11.5 | PATENT | DOCUMENTS | 2005/0169959 A1
2005/0175657 A1 | | Hunter et al. | | 0.5. | IAILIVI | DOCOMENTS | 2005/0187618 A1 | | | | 7,789,909 B2 | 9/2010 | Andersen et al. | 2005/0191248 A1 | | Hunter et al. | | 7,846,203 B2 | 12/2010 | Cribier | 2005/0228494 A1 | | Marquez | | 7,846,204 B2 | | Letac et al. | 2005/0241981 A1
2005/0246035 A1 | | Gupta et al.
Wolfinbarger, Jr. et al. | | 7,871,431 B2 | | Gurm et al. | 2005/0247033 A1 | | Stack et al. | | 7,892,281 B2
7,914,576 B2 | | Seguin et al.
Navia et al. | 2005/0267529 A1 | | Crockett et al. | | RE42,395 E | | Wright et al. | 2006/0004439 A1 | | Spenser et al. | | 7,967,833 B2 | 6/2011 | Sterman et al. | 2006/0004443 A1 | | Liddicoat et al. | | 7,981,151 B2 | 7/2011 | | 2006/0020336 A1
2006/0025800 A1 | | Liddicoat
Suresh | | 8,002,825 B2
8,007,992 B2 | | Letac et al.
Tian et al. | 2006/0023300 A1 | | Vidlund et al. | | 8,057,540 B2 | | Letac et al. | 2006/0074486 A1 | | Liddicoat et al. | | 8,080,054 B2 | 12/2011 | | 2006/0089708 A1 | | Osse et al. | | 8,105,375 B2 | | Navia et al. | 2006/0111733 A1
2006/0129225 A1 | | Shriver
Kopia et al. | | 8,512,401 B2 | | Murray et al. | 2006/0129223 A1
2006/0134079 A1 | | Sih et al. | | 8,512,403 B2
2001/0010017 A1 | | Navia et al.
Letac et al. | 2006/0140916 A1 | | Siani-Rose et al. | | 2001/0010017 A1
2001/0023372 A1* | | Chen et al 623/23.72 | 2006/0173475 A1 | | Lafontaine et al. | | 2001/0049558 A1 | 12/2001 | Liddicoat et al. | 2006/0178740 A1 | | Stacchino et al. | | 2002/0005073 A1 | | Tompkins et al. | 2006/0190074 AI
2006/0193885 AI | | Hill et al.
Neethling et al. | | 2002/0028243 A1
2002/0029783 A1 | | Masters | 2006/0195010 A1 | | Arnal et al. | | 2002/0029783 A1
2002/0032481 A1 | | Stevens et al.
Gabbay | 2006/0195183 A1 | | Navia et al. | | 2002/0032481 A1
2002/0032482 A1 | 3/2002 | | 2006/0206203 A1 | | Yang et al. | | 2002/0037940 A1 | | Koob et al. | 2006/0212111 A1 | | Case et al. | | 2002/0042621 A1 | | Liddicoat et al. | 2006/0229701 A1
2006/0240063 A9 | | Gurm et al. | | 2002/0052651 A1 | | Myers et al. | 2006/0240063 AS
2006/0240064 AS | | Hunter et al.
Hunter et al. | | 2002/0091441 A1*
2002/0095167 A1 | | Guzik 623/2.13
Liddicoat et al. | 2006/0259134 A1 | | Schwammenthal et al. | | 2002/0095107 A1
2002/0095994 A1 | | Vesely et al. | 2006/0259135 A1 | | Navia et al. | | 2002/0119437 A1* | | Grooms et al 435/2 | 2006/0259137 A1 | | Artof et al. | | 2002/0123789 A1* | | Francis et al 623/1.13 | 2006/0265056 A1 | | Nguyen et al. | | 2002/0128708 A1 | | Northrup et al. | 2006/0287571 A1
2006/0292125 A1 | | Gozzi et al.
Kellar et al. | | 2002/0146393 A1*
2002/0151970 A1 | | Bell et al 424/93.1
Garrison et al. | 2007/0010857 A1 | | Sugimoto et al. | | 2002/0131970 A1
2003/0027332 A1 | | Lafrance et al. | 2007/0043431 A1 | | Melsheimer | | 2003/0078659 A1 | | | 2007/0050014 A1 | | Johnson | | 2003/0102000 A1 | | Stevens et al. | 2007/0050022 A1 | | Vidlund et al. | | 2003/0118560 A1* | 6/2003 | | 2007/0056346 A1
2007/0060932 A1 | | Spenser et al.
Stack et al. | | 2003/0130727 A1
2003/0130729 A1 | 7/2003 | Drasler et al.
Paniagua et al. | 2007/0061008 A1 | | Salahieh et al. | | 2003/0130725 A1
2003/0130731 A1 | | Vidlund et al. | 2007/0100426 A1 | | Rudakov et al. | | 2003/0149477 A1 | 8/2003 | Gabbay | 2007/0104395 A1 | | Kinigakis et al. | | 2003/0153974 A1 | | Spenser et al. | 2007/0128174 A1
2007/0173861 A1 | | Kleinsek et al.
Strommer et al. | | 2003/0187362 A1 | 10/2003 | Murphy et al. | 2007/01/3801 A1 | | Forster et al. | | 2003/0195620 A1
2003/0204023 A1 | 10/2003 | Huynh et al.
Koob et al. | 2007/0213813 A1 | | Von Segessler et al. | | 2003/0209835 A1 | | Chun et al. | 2007/0250154 A1 | | Greenberg et al. | | 2003/0212460 A1 | 11/2003 | Darois et al. | 2007/0263226 A1 | | | | 2003/0212462 A1 | | Gryska et al. | 2007/0276432 A1
2007/0276461 A1 | | Stack et al.
Andreas et al. | | 2003/0217415 A1
2004/0024452 A1 | | Crouch et al.
Kruse et al. | 2008/0004686 A1 | | Hunt et al. | | 2004/0039442 A1 | | St. Goar | 2008/0009667 A1 | 1/2008 | Longhini et al. | | 2004/0055608 A1 | 3/2004 | | 2008/0009940 A1 | | Cribier | | 2004/0059418 A1 | | McKay et al. | 2008/0029105 A1
2008/0039871 A1 | | Stevens et al.
Wallace et al. | | 2004/0098092 A1 | 5/2004 | | 2008/0039871 A1
2008/0039926 A1 | | Majercak et al. | | 2004/0158321 A1
2004/0193261 A1 | | Reuter et al.
Berreklouw | 2008/0058798 A1 | | Wallace et al. | | 2004/0230285 A1 | 11/2004 | | 2008/0082113 A1 | | Bishop et al. | | 2004/0243153 A1 | 12/2004 | Liddicoat et al. | 2008/0102439 A1 | | Tian et al. | | 2004/0243229 A1 | | Vidlund et al. | 2008/0133004 A1
2008/0147182 A1 | | White
Righini et al. | | 2005/0004668 A1
2005/0027369 A1 | | Aklog et al.
Eldridge et al. | 2008/014/182 A1 | | Obermiller et al. | | 2005/0027309 A1
2005/0043819 A1 | 2/2005 | | 2008/0177381 A1 | | Navia et al. | | 2005/0096673 A1 | | Stack et al. | 2008/0183280 A1 | | Agnew et al. | | 2005/0113910 A1 | | Paniagua et al. | 2008/0183283 A1 | | Downing | | 2005/0137681 A1 | 6/2005 | Shoemaker et al. | 2008/0190989 A1 | | Crews et al. | | 2005/0137682 A1
2005/0142163 A1 | | Justino
Hunter et al. | 2008/0195200 AI
2008/0199843 AI | | Vidlund et al.
Haverich et al. | | 2005/0142103 A1
2005/0147562 A1 | | Hunter et al. | 2008/0199843 Al | | Paul et al. | | 2005/0147599 A1 | | Hunter et al. | 2009/0005857 A1 | | Ischinger | | 2005/0147643 A1 | | Hunter et al. | 2009/0030511 A1 | | Paniagua et al. | | 2005/0148512 A1 | | Hunter et al. | 2009/0043383 A1 | | McGregor et al. | | 2005/0158274 A1 | | Hunter et al. | 2009/0054969 A1 | | Salahieh | | 2005/0159811 A1 | 7/2005 | Lane | 2009/0062907 A1 | 3/2009 | Quijano et al. | | | | | | | | | U.S. PATENT DOCUMENTS | (56) | Referen | nces Cited | WO
WO | 2011-109433
2011-109450 | 3/2011
9/2011 | | |
--|-----------|---------------|------------------|--------------------|----------------------------|-------------------------------------|--|--| | 2009-013-033 A 2009 Semichou Affidavit of Dr. Gervasio A. Lamas, M.D., signed Sep. 3, 2009 2009-014-005 A1 62009 Dove et al. 2009-024-034 A 7,0009 Gelbay 2009-024-034 A 7,0009 Gelbay 2009-024-034 A 7,0009 Gelbay 2009-024-034 A 1,0009 Gelbay 2009-024-034 A 2,0009-024-044 2,0009-024- | | U.S. PATENT | DOCUMENTS | | | | | | | 2009.015175 A1 6.2009 Deniction Affidative 1D. Gervasio A. Lamas, M.D., signate Sep. 3, 2009 2009.0158724 A1 7.2009 Melsheimer 2009.0254175 A1 17.2009 Melsheimer 2009.0254175 A1 17.2009 Gabbay 17.2001 Gabbay A1 17.2009 Gabbay A1 17.2001 G | | | | OTHER PUBLICATIONS | | | | | | Andersen. H.R. et al., "Transdurinsal implantation of artificial heart 2009/0328149 Al 7,0209 (abbay 2009/0328149 Al 102009 2010 (abbay 2009/0328149 Al 2010 (abba) Abbate et al. 2010/0318327 Al 2010 (abbate al 2010/0318277 2010/0318278 Al 2010 (abbate 2010/0318278 Al 2010 (abbate al 2010/0318278 Al 2010/0318278 Al 2010/0318278 Al 2010 (abbate al 2010/0318278 2 | | | | Affidavit of | Dr. Gervasio A. Lama | as, M.D., signed Sep. 3, 2009. | | | | 2009/08724 A1 7,2009 Melsheimer 2009/08724 A1 12009 Galbay 2009/08747 A1 12009 Galbay 2009/08748 A1 22010 Davidson et al. 2010/08748 22011 | | | | | | | | | | 2009/025416 Al 172009 Coligano et al. | | | | | • | | | | | Donnberfer, Philipp M.D. et al., "Precutaneous Insention of the Pul- 2010/00036479 A1 2/2010 Parcalk et al. 2010/0003648 A1 2/2010 Harton et al. 2010/0003187 A1 2/2010 Abbate et al. 2010/0003187 A1 2/2010 Abbate et al. 2010/0003187 A1 2/2010 Abbate et al. 2010/0013105 A1 5/2010 Particle | | | | | | n.wikipedia.org/Artificial_heart_ | | | | 20100030329 Al 22010 Pavcnik et al. | | | | | | Parautaneous Insertion of the Pul | | | | 2010/0036497 Al 2/2010 Hill et al. Elsevier Science, Inc. 2002, pp. 1664-1669, London, UK, and Paris, 2010/00049312 Al 2/2010 Abbate et al. 2010/0049312 Al 2/2010 Edoga et al. 2/2010 Edoga et al. 2/2010 Edoga et al. 2/2010 2/2013 Al 5/2010 Edoga et al. 2/2010 Edoga et al. 2/2010/0049312 Al 2/2010 Edoga et al. 2/2010/0049318 Al 2/2010 Edoga et al. 2/2010/0049318 Al 2/2010 Edoga et al. 2/2010/0049318 Al 2/2010 Harsten 2/2010/0049918 Al 2/2010 Harsten 2/2010/004994 Al 1/2010 Tan et al. 2/2011 Edoca 2/201 | | | | | | | | | | 2010/0036488 Al 2/2010 Harlion et al. PR. 2010/0048987 Al 2/2010 Abbatte et al. 2010/0048987 Al 2/2010 Edoga et al. 2010/0048987 Al 2/2010 Edoga et al. 2010/013652 Al 2/2010 Edoga et al. 2010/013652 Al 3/2010 Edoga et al. 2010/013652 Al 3/2010 Edoga et al. 2010/013652 Al 8/2010 Edoga et al. 2010/013652 Al 8/2010 Edoga et al. 2010/013652 Al 8/2010 Chan et al. 2010/013652 Al 8/2010 Harlen 2010/013652 Al 9/2010 Harlen 2010/013652 Al 9/2010 Harlen 2010/013652 Al 19/2010 Chan et al. 2010/013653 Al 19/2010 Tan et al. 2010/013653 Al 1/2011 Navia et al. 2011/004573 Al 1/2011 Letae et al. 2011/004573 Al 1/2011 Navia 20 | | | Hill et al. | | | | | | | 2010/094997 Al 2/2010 Khairkhahan 2010/094991 Al 2/2010 Edoga et al. 2010/094991 Al 2/2010 Pintor et al. 2010/094991 Al 2/2010 Pintor et al. 2010/0923487 Al 2/2010 Hirska 2010/0923487 Al 2/2010 Hirska 2010/0924991 Al 2/2010 Tana et al. 2010/0924991 Al 2/2010 Tana et al. 2010/0924991 Al 2/2010 Tana et al. 2010/0924991 Al 2/2010 Rowe et al. 2010/0924991 Al 2/2010 Navia et al. 2010/092597 Al 1/2010 Navia et al. 2011/092597 Al 1/2010 Navia et al. 2011/092597 Al 1/2010 Navia et al. 2011/094997 2/2010 Letac et al. 2011/094997 Al 2/2010 Navia et al. 2011/094997 Al 2/2010 Navia et al. 2011/094997 Al 2/2010 Navia et al. 2/2011/094997 Al 2/2010 Navia et al. 2/2011/094997 Al 2/2011 2/2011/094999 Al 2/2011 Navia et al. 2/2011/094999 Al 2/2 | | | | | , | , , | | | | 2010/031054 Al 52/010 19val et al. 2010/016103 Al 52/010 19val et al. 2010/016103 Al 62/010 Pintor et al. 2010/01877 Al 72/010 Bridor et al. 2010/01878 Al 92/010 Huska 2010/024106 Al 92/010 Huska 2010/024106 Al 92/010 Huska 2010/024106 Al 92/010 Huska 2010/024106 Al 92/010 Hatten 2010/024578 Al 92/010 Shang 2010/024578 Al 92/010 Shang 2010/024578 Al 92/010 Hatten 2010/024578 Al 102/010 Rowe et al. 2010/024578 Al 102/010 Rowe et al. 2010/031233 Al 122/010 Rowe et al. 2010/031233 Al 22/010 Lefac et al. 2011/091879 Al 22/011 Rowe 2011/091879 Al 22/011 Rowe 2011/091879 Al 22/011 Rowe 2011/091879 Al 22/011 Shenichou et al. 2011/09189 Al 22/011 Paniagua et al. 2012/097855 Al 22/012 Fish et al. 2012/097855 Al 22/012 Shenichou et al. 2012/097855 Al 22/012 Shenichou et al. 2012/097855 Al 22/012 Paniagua et al. 2012/097855 Al 22/012 Shenichou et al. 2012/097855 Al 22/012 Shenichou et al. 2012/097855 Al 22/012 Paniagua et al. 2012/097855 Al 22/012 Shenichou al | | | | | | | | | | 2010/10/10/3 Al 5/2010 Travial et al. 2010/10/18/277 Al 7/2010 Printor et al. 2010/10/18/277 Al 7/2010 Printor et al. 2010/18/277 Al 7/2010 Braido et al. 2010/18/277 Al 7/2010 Braido et al. 2010/18/277 Al 9/2010 Hauten 2010/18/27/3 Al 202010 Hauten 2010/18/27/3 Al 202010 Travial et al. 2010/18/27/3 Al 10/2010 Travial et al. 2010/18/27/3 Al 10/2010 Travial et al. 2010/18/27/3 Al 10/2010 Rowe et al. 2010/18/27/3 Al 10/2010 Navia et al. 2010/18/27/3 Al 10/2010 Navia et al. 2010/18/27/3 Al 10/2010 Navia et al. 2010/18/27/3 Al 202011 Lefac 2020/27/3 Al 202011 Lefac et al. 2020/27/3 Al 202011 Rower et al. 2020/27/3 Al 202011 202012 Al 202012 Al 202012 Al 202014 Al 202012 Al 202014 Al 202012 Al 202014 Al 202014 Al 202014 Al 202014 Al 202014 Al 202014 Al 202015 Al 202014 Al 202014 Al 202014 Al 20201 | | | | | | | | | | 2010018527 Al 72010 Braids of al. Bonhoeffer, Philipp et al., "Transcatherter Implantation of a Bovine 2010021382 Al 82010 Chan et al. 201002408 Al 92010 Hatten 201002459 Al 92010 Hatten 201002459 Al 102010 Tran et al. 20100256751 Al 102010 Row et al. 20100256751 Al 102010 Row et al. 20100035751 Al 102010 Row et al. 20110003257 Al 102011 Navia et al. 20110003257 Al 12011 Navia et al. 20110003257 Al 12011 Savia et al. 2011003723 Al 22011 Lene et al. 2011004375 Al 22011 Lene et al. 2011004375 Al 22011 Lene et al. 2011003720 Al 2011 Davidson et al. 20110137409 Al 62011 Row et al. 20110137409 Al 62011 Row et al. 20110137409 Al 62011 Bonhoeffer Philippe et al. 20110137409 Al 62011 Chan et al. 20110137409 Al 62011 Chan et al. 20110137409 Al 62011 Bonhoeffer Philippe et al. 2011013740 Al 20110 Al 20110 Bonhoeffer Philippe et al. 2011013740 Al 20110 2 | | | | • | | The Lacet, vol. 356, Oct. 21, 2000, | | | | 2010/02/1382 Al 9/2010 Harska 2010/02/1387 Al 9/2010 Harska 2010/02/1387 Al 9/2010 Harska 2010/02/1387 Al 9/2010 Zanara 2010/02/1387 Al 10/2010 Tanara 2010/02/1387 Al 10/2010 Rowe et al 2010/03/133 Al 12/2010 Navia et al 2011/03/137 Al 12/2011 Navia et al 2011/03/137 Al 12/2011 Jimenez Javia et al 2011/03/137 Al 2011 Letac et al 2011/03/137 Al 2011 Letac et al 2011/03/137 Al 2011 Navia 2011/03 | | | | - | | eatherter Implantation of a Boyine | | | | 2010/0244978 Al 9/2010 Harten Boudjemine, Younes et al., "Prectateous pulmonary valve replace—2010/0249918 Al 9/2010 Tran et al. | | | | | | | | | | 2010/241069 Al 9/2010 Hatten Boudjemline, Younes et al., "Pereutaneous pulmonary valve replace- 2010/024978 Al 9/2010 Rowe et al. 2010/0312333 Al 1/2/2010 Rowe et al. 2011/0013/2333 Al 1/2/2010 Navia et al. 2011/0013/233 Al 1/2/2011 Navia et al. 2011/0013/233 Al 1/2/2011 Savia et al. 2011/0013/233 Al 1/2/2011 Savia et al. 2011/0013/233 Al 1/2/2011 Savia et al. 2011/0013/234 Al 1/2/2011 Letac et al. 2011/0013/234 Al 1/2/2011 Letac et al. 2011/0013/234 Al 1/2/2011 Letac et al. 2011/0013/234 Al 2/2011 Varge et al. 2011/0013/203 Al 2/2011 Savia et al. 2011/0013/203 Al 2/2011 Savia et al. 2011/013/203 Al 2/2011 Savia et al. 2011/013/203 Al 2/2011 Navia et al. 2011/013/203 Al 2/2011 Navia et al. 2011/013/203 Al 2/2011 Savia et al. 2011/013/203 Al 2/2011 Paniagua et al. 2011/013/203 Al 2/2011 Paniagua et al. 2012/007835 Al 2/2011
Paniagua et al. 2012/007835 Al 2/2012 2/2013 Paniagua et al. 2012/007835 Al 2/2014 Paniagua et al. 2012/007835 Al 2/2014 Paniagua et al. 2012/007835 Al 2/2014 | | | | | | | | | | 2010/0256749 Al 10/2010 Trant et al. 2010/025675 Al 10/2010 Rowe et al. 2010/0312333 Al 12/2010 Navia et al. 2010/0013/2333 Al 12/2011 Navia et al. 2011/0015728 Al 1/2011 Jimenz et al. 2011/0015736 Al 1/2011 Letac et al. 2011/0015736 Al 1/2011 Letac et al. 2011/0015730 Al 2/2011 Letac et al. 2011/0015730 Al 2/2011 Varje et al. 2011/0015730 Al 2/2011 Varje et al. 2011/0015730 Al 2/2011 Varje et al. 2011/015730 Al 2/2011 Varje et al. 2011/015730 Al 2/2011 Navia et al. 2011/015730 Al 2/2011 Painiqua et al. 2011/015730 Al 2/2011 Painiqua et al. 2/201/078355 Al 2/2011 Painiqua et al. 2/201/078355 Al 2/2012 Painiqua et al. 2/201/078355 Al 2/2012 Navia et al. 2/201/078355 Al 2/2012 Navia et al. 2/201/078355 Al 2/2012 Painiqua et al. 2/201/078355 Al 2/2012 Navia 2/201/078 | | | | | | | | | | 2010/0256751 Al 10/2010 Rowe et al. Braga-Vilela, A. et al., "Extracellular Matrix of Porcine Pericardium; 2011/0604299 Al 1/2011 Navia et al. Biochemistry and Collagen Architecture" J. Membr Biol., 2008. | | | | | | | | | | 2010/031233 Al 12/2010 Navia et al. Biochemistry and Collagen Architecture" J. Membr Biol., 2008. 2011/0015728 Al 1/2011 Lineace et al. inp Principles toward the Development of a Semiluant Heart Valve 2011/0087322 Al 4/2011 Letae et al. inp Principles toward the Development of a Semiluant Heart Valve 2011/018739 Al 6/2011 Varia et al. inp Principles toward the Development of a Semiluant Heart Valve 2011/018739 Al 6/2011 Varia et al. 1736. Cale, A.R. et al., "Revisited: a descending thorasic aortic valve to treat prosthetic valve insufficiency" Ann Thorac Surg, May 1993. 3011/016636 Al 7/2011 Navia et al. 2011/0178897 Al 2011 Varia et al. 2011/017897 Al 2011 Solton et al. 2011/0207814 Al 2021 Bolton et al. 2019/030825 Al 1/2021 Fish et al. 2012/0078345 Al 3/2012 Fish et al. 2012/007835 Al 3/2012 Gautam et al. 2012/0078345 Al 2/2012 Paniagua et al. 2012/007835 Al 3/2012 Fish et al. 2012/007835 Al 3/2012 Fish et al. 2012/007835 Al 3/2012 Gautam et al. 2012/007835 Al 3/2012 Gautam et al. 2012/007835 Al 3/2012 Gautam et al. 2012/007835 Al 3/2012 Al 2/2014 Al 2/2012 Paniagua et al. 2/2014 Al | | | | | | | | | | 2011/004499 Al | | | | _ | | | | | | | | | | | | | | | | 2011/0387322 Al | | | | | | | | | | Cale, A.R. et al., "Revisited: a descending thorasic aortic valve to treat prosthetic valve insufficiency" Ann Thorac Surg, May 1993, 2011/1016663 Al. 7.2011 Navia et al. 2011/0178597 Ap. 7/2011 Navia et al. 2011/0224607 Al. 9/2011 Boilcon et al. 2011/0224607 Al. 9/2011 Occident al. 2011/030625 Al. 12/2011 Boilcon et al. 2011/030625 Al. 12/2011 Fish et al. 2012/0078334 Al. 3/2012 Fish et al. 2012/0078335 Al. 3/2012 Fish et al. 2012/0078356 Al. 3/2012 Fish et al. 2012/0078356 Al. 3/2012 Pish et al. 2012/005551 Al. 4/2012 Navia et al. 2012/0158128 Al. 6/2012 Gautam et al. 2012/031041 Al. 12/2012 Paniagua et al. 2012/031041 Al. 12/2012 Paniagua et al. 2012/0304021 Al. 11/2013 Navia et al. 2013/030401 Al. 12/2014 Navia et al. 2013/030401 Al. 12/2015 Paniagua et al. 2014/0039613 Al. 2/2014 Navia et al. 2015/031041 Al. 12/2015 Paniagua et al. 2015/031041 Al. 12/2015 Paniagua et al. 2015/031041 Al. 12/2015 Paniagua et al. 2016/030361 Al. 2/2014 Navia et al. 2016/03031 2/2015 Navia et al. 2016/03031 Al. 2/2014 Navia et al. 2016/03031 Al. 2/2015 Navia et al. 2016/03031 Al. 2/2015 Navia et al. 2016/03031 Al. 2/2016 N | | | | | Tissue Engineering, v | ol. 10, No. 11/12, 2004 pp. 1725- | | | | Treat prosthetic valve insufficiency" Ann Thorac Surg, May 1993, 2011/016636 Al 7/2011 Rowe | 2011/0137 | | | | . 1 #P 11 1 1 | ar ar ar ar ar ar | | | | 2011/0166636 Al 7,2011 Rowe 2011/0178597 A9 7/2011 Navia et al. 2011/0224607 Al 9/2011 Seinchou et al. 2011/0224607 Al 9/2011 Wogelbaum et al. 2011/030625 Al 12/2011 Bolichou et al. 2011/0300625 Al 12/2011 Fish et al. 2012/0078343 Al 3/2012 Fish et al. 2012/0078356 Al 3/2012 Fish et al. 2012/018538 Al 7/2012 Navia et al. 2012/0310041 Al 12/2012 Paniagua et al. 2012/0310041 Al 12/2012 Paniagua et al. 2014/039613 Al 2/2014 Navia et al. 2014/039613 Al 2/2014 Navia et al. 2014/039613 Al 2/2014 Navia et al. 2014/039613 Al 2/2014 Avaia | | | | | | | | | | 2011/0178597 A9 7.2011 Navia et al. Cerrolaza, M et al., "A comparison of the hydrodynamical behaviour of three heart aortic prostheses by numerical methods". "Collagen" http://en.wikipedia.org/wiki/Collagen, printed May 13, 2001/0300625 A1 12/2011 Paniagua et al. "Collagen" http://en.wikipedia.org/wiki/Collagen, printed May 13, 2009. Collins, J. J., Jr., "The Evolution of artificial heart valve" N. Engl J 2012/0078336 A1 3/2012 Fish et al. Med, Feb. 28, 1991; 324(9):624-6. Corden, J. et al., "The influence of open leaflet geometry on the haemodynamic flow characteristics of polyrethane trileaflet artificial heart valve" PubMed medline query, p. 1 of 1. Cribier, Alain et al., "Percutaneious Transcatheter Implantation of an Aorite Valve Prosthesis for Calcific Aortic Stenosis: First Human 2013/0304201 A1 11/2012 Paniagua et al. Case Description" Circulation J of the Amer Heart Assoc, originally published online Nov. 25, 2002. Edwards Lifesciences Receives FDA Approval for New Heart Valve, http://www.medicalnewstoday.com/articles/149588.php, dated May 11, 2009. Postosio 12/2013 Postosio 12/2013 Postosio 12/2013 Postosio 12/2013 Postosio 12/2013 Postosio 12/2014 Postosio 12/2013 Postosio 12/2014 | | | | | | y Ami Thorac Surg, May 1993, | | | | 2011/0218619 A1 92011 Senichou et al. | | | | | | of the hydrodynamical behaviour | | | | 2011/0304051 A1 10/2011 Bolton et al. 2009. | | | | | | | | | | 2011/0300625 Al 12/2011 Paniagua et al. 2011/0301700 Al 12/2011 Fish et al. 2012/0078343 Al 2/2012 Fish et al. 2012/0078356 Al 3/2012 Fish et al. 2012/0185038 Al 7/2012 Gautam et al. Acordic Valve Prosthesis for Calcific Aortic Stenosis: First Human 2012/0310041 Al 12/2012 Paniagua et al. Acortic Valve Prosthesis for Calcific Aortic Stenosis: First Human 2013/0304201 Al 11/2013 Navia et al. Acortic Valve Prosthesis for Calcific Aortic Stenosis: First Human 2013/0304201 Al 11/2013 Navia et al. Package Procuration of the Amer Heart Assoc, originally published online Nov. 25, 2002. Edwards Lifesciences Receives FDA Approval for New Heart Valve, http://www.medicalnewstoday.com/articles/149588.php, dated May 11, 2009. Fish, R. David, "Percutaneous Heart Valve Replacement: Enthusiasm P 2055266 2/2012 Tempered" Circulation J of the Amer Heart Assoc, 2004; 110; 1876-1878. Fishbein, M.C. et al., "Cardiac pathology after aortic valve replacement using Huffangel trilleaflet prostheses: study of 20 necropsy patients" Ann Heart J., Apr. 1975, 89(4), pp. 443-448. Gloeckner, D. Claire et al., "Mechanical Evaluation and Design of a Multilayered Collagenous Repair Biomaterial" J. of Biometical MoV 99/30646 6/1999 Grube E., et al., "Progress and Current Status of Percutaneous Aortic WO 03/047468 6/2003 03/04746 | | 607 A1 9/2011 | Vogelbaum et al. | - | http://en.wikipedia.or | g/wiki/Collagen, printed May 13, | | | | 2011/0301700 A1 12/2011 Fish et al. Med, Feb. 28, 1991; 324(9):624-6. Corden, J. et al., "The influence of open leaflet geometry on the haemodynamic flow characteristics of polyrethane trileaflet artificial 2012/0185038 A1 | | | | | r r wen e 1 d | C (C 11 / 1 2N F 11 | | | | Corden, J. et al., "The influence of open leaflet geometry on the | | | | | | | | | | Name | | | | | | | | | | 2012/0158128 | | | | | | | | | | April 2/03/10/04 Al 12/2012 Paniagua et al. 2/013/03/04201 Al 11/2013 Navia et al. 2/2014 Navia et al. Published online Nov. 25, 2002. Edwards Lifesciences Receives FDA Approval for New Heart Valve, http://www.medicalnewstoday.com/articles/149588.php, dated May 11, 2009. EP 1441672 9/2011 Fish, R. David, "Percutaneous Heart Valve Replacement: Enthusiasm EP 2055266 2/2012 Tempered" Circulation J of the Amer Heart Assoc, 2004; 110; 1876-EP 1621162 5/2012 1878. EP 2260796 2/2013 Fish, R. David, "Percutaneous Heart Valve Replacement: Enthusiasm JP 2001-500761 1/2001 Post 2001-500761 1/2001 Post 2001-500761 1/2001 Post 2005-103321 4/2005 Post 2/1097 Post 2/1097 Post 2/1098 2/ | | | | | | | | | | 2013/0304201 A1 | 2012/0185 | | | | | | | | | Port | | | 2 | | | | | | | Edwards Lifesciences Receives FDA Approval for New Heart Valve, http://www.medicalnewstoday.com/articles/149588.php, dated May 11, 2009. EP 1441672 9/2011 Fish, R. David, "Percutaneous Heart Valve Replacement: Enthusiasm P 2055266 2/2012 Tempered" Circulation J of the Amer Heart Assoc, 2004; 110; 1876-EP 1621162 5/2012 1878. EP 2260796 2/2013 Fishbein, M.C. et al., "Cardiac pathology after aortic valve replacement using Hufnagel trileaflet prostheses: study of 20 necropsy 1P 2001-500761 1/2001 ment using Hufnagel trileaflet prostheses: study of 20 necropsy 1P 2005-103321 4/2005 patients" Ann Heart J., Apr. 1975, 89(4), pp. 443-448. RU 2355361 C 5/2009 Gloeckner, D. Claire et al., "Mechanical Evaluation and Design of a WO 91-17720 11/1991 Multilayered Collagenous Repair Biomaterial" J. of Biomedical WO 92-17118 10/1992 Materials Research Part A, vol. 52 Iss 2, pp. 365-373, Published online Aug. 15, 2000, Wiley Periodicals, Inc. WO 99/30646 6/1999 Materials Research Part A, vol. 52 Iss 2, pp. 365-373, Published online Aug. 15, 2000, Wiley Periodicals, Inc. WO 09/12164 3/2000 Valve Replacement: Results of Three Device Generations of the WO 01-102031 1/2001 CoreValve Revalving System", Circ.
Cardiovasc Intervent. WO 03/047468 6/2003 2004/026124 4/2004 For valvular surgery: a proof of concept study" J. Heart Valve Dis, WO 2004/026124 4/2004 For valvular surgery: a proof of concept study" J. Heart Valve Dis, WO 2004/082527 9/2004 Size: Relation to Doppler Echocardiographic Finding and Pressure WO 2009-052188 4/2009 Size: Relation to Doppler Echocardiography 2000; | | | | | * | The Amer Heart Assoc, originary | | | | FOREIGN PATENT DOCUMENTS | 2014/0039 | 013 A1 2/2014 | Navia et al. | | | OA Approval for New Heart Valve, | | | | EP 1441672 9/2011 Fish, R. David, "Percutaneous Heart Valve Replacement: Enthusiasm EP 2055266 2/2012 Tempered" Circulation J of the Amer Heart Assoc, 2004; 110; 1876-1878. EP 1621162 5/2012 1878. EP 2260796 2/2013 Fishbein, M.C. et al., "Cardiac pathology after aortic valve replacement using Hufnagel trileaflet prostheses: study of 20 necropsy patients" Ann Heart J., Apr. 1975, 89(4), pp. 443-448. JP 2001-500761 1/2001 ment using Hufnagel trileaflet prostheses: study of 20 necropsy patients" Ann Heart J., Apr. 1975, 89(4), pp. 443-448. RU 2355361 C 5/2009 Gloeckner, D. Claire et al., "Mechanical Evaluation and Design of a Multilayered Collagenous Repair Biomaterial" J. of Biomedical Multilayered Collagenous Repair Biomaterial" J. of Biomedical Materials Research Part A, vol. 52 Iss 2, pp. 365-373, Published online Aug. 15, 2000, Wiley Periodicals, Inc. WO 99/30646 6/1999 Grube E., et al., "Progress and Current Status of Percutaneous Aortic Valve Replacement: Results of Three Device Generations of the CoreValve Revalving System", Circ. Cardiovasc Intervent. WO 03/047468 6/2003 2004/028124 4/2004 WO 2004/026124 4/2004 Hanlon, JG et al., "Pre-use intraoperative testing of autologous tissue for valvular surgery: a proof of concept study" J. Heart Valve Dis, Nov | | FOREIGN PATE | NT DOCUMENTS | | | | | | | EP 2055266 2/2012 Tempered" Circulation J of the Amer Heart Assoc, 2004; 110; 1876-EP 1621162 5/2012 1878. IP 2260796 2/2013 JP 9-501594 2/1997 Fishbein, M.C. et al., "Cardiac pathology after aortic valve replacement using Hufnagel trileaflet prostheses: study of 20 necropsy patients" Ann Heart J., Apr. 1975, 89(4), pp. 443-448. RU 2005-103321 4/2005 Gloeckner, D. Claire et al., "Mechanical Evaluation and Design of a WO 91-17720 11/1991 Multilayered Collagenous Repair Biomaterial" J. of Biomedical Multilayered Collagenous Repair Biomaterial" J. of Biomedical Multilayered Part A, vol. 52 Iss 2, pp. 365-373, Published wo 98/29057 7/1998 online Aug. 15, 2000, Wiley Periodicals, Inc. WO 99/30646 6/1999 Grube E., et al., "Progress and Current Status of Percutaneous Aortic Valve Replacement: Results of Three Device Generations of the CoreValve Revalving System", Circ. Cardiovasc Intervent. WO 03/047468 6/2003 2008;1:167-175 (abstract). WO 2004/026124 4/2004 For valvular surgery: a proof of concept study" J. Heart Valve Dis, WO 2004/082527 9/2004 For valvular surgery: a proof of concept study" J. Heart Valve Dis, Nov. 1999; 8(6); pp. 614-623. WO 2009-052188 4/2009 Sech-Hanssen, Odd, M.D. et al., "Aortic Prosthetic Valve Desing and WO 2009/149462 12/2009 Recovery—An in Vitro Study" J. Am Soc Echocardiography 2000; | 770 | | 0/0044 | | | | | | | EP 1621162 5/2012 1878. EP 2260796 2/2013 JP 9-501594 2/1997 JP 2001-500761 1/2001 ment using Hufnagel trileaflet prostheses: study of 20 necropsy patients" Ann Heart J., Apr. 1975, 89(4), pp. 443-448. RU 2355361 C 5/2009 Gloeckner, D. Claire et al., "Mechanical Evaluation and Design of a WO 91-17720 11/1991 Multilayered Collagenous Repair Biomaterial" J. of Biomedical WO 98/29057 7/1998 online Aug. 15, 2000, Wiley Periodicals, Inc. WO 99/30646 6/1999 Grube E., et al., "Progress and Current Status of Percutaneous Aortic WO 00/12164 3/2000 Valve Replacement: Results of Three Device Generations of the WO 01-02031 1/2001 CoreValve Revalving System", Circ. Cardiovasc Intervent. WO 03/047468 6/2003 2004/026124 4/2004 Grube E., et al., "Pre-use intraoperative testing of autologous tissue WO 2004/08527 9/2004 For valvular surgery: a proof of concept study" J. Heart Valve Dis, Nov. 1999; 8(6); pp. 614-623. WO 2007-138572 1/2007 Bech-Hanssen, Odd, M.D. et al., "Aortic Prosthetic Valve Desing and WO 2009/149462 12/2009 Recovery—An in Vitro Study" J. Am Soc Echocardiography 2000; | | | | | | | | | | EP | EP | | | | Circulation J of the Ar | ner Heart Assoc, 2004; 110; 1870- | | | | Page | | | | | I.C. et al., "Cardiac pa | thology after aortic valve replace- | | | | JP 2005-103321 4/2005 patients" Ann Heart J., Apr. 1975, 89(4), pp. 443-448. RU 2355361 C 5/2009 Gloeckner, D. Claire et al., "Mechanical Evaluation and Design of a Multilayered Collagenous Repair Biomaterial" J. of Biomedical Multilayered Collagenous Repair Biomaterial" J. of Biomedical Multilayered Collagenous Repair Biomaterial" J. of Biomedical Materials Research Part A, vol. 52 Iss 2, pp. 365-373, Published online Aug. 15, 2000, Wiley Periodicals, Inc. WO 99/30646 6/1999 Grube E., et al., "Progress and Current Status of Percutaneous Aortic Valve Replacement: Results of Three Device Generations of the Volve Revalving System", Circ. Cardiovasc Intervent. WO WO 03/047468 6/2003 2008;1:167-175 (abstract). WO 2004/026124 4/2004 Hanlon, JG et al., "Pre-use intraoperative testing of autologous tissue For valvular surgery: a proof of concept study" J. Heart Valve Dis, Nov. 1999; 8(6); pp. 614-623. WO 2004-095342 9/2006 Nov. 1999; 8(6); pp. 614-623. WO 2009-052188 4/2009 Size: Relation to Doppler Echocardiographic Finding and Pressure Recovery—An in Vitro Study" J. Am Soc Echocardiography 2000; | | | | ment using | Hufnagel trileaflet p | rostheses: study of 20 necropsy | | | | WO 91-17720 11/1991 Multilayered Collagenous Repair Biomaterial" J. of Biomedical Materials Research Part A, vol. 52 Iss 2, pp. 365-373, Published WO WO 98/29057 7/1998 online Aug. 15, 2000, Wiley Periodicals, Inc. WO 99/30646 6/1999 Grube E., et al., "Progress and Current Status of Percutaneous Aortic Wo WO 00/12164 3/2000 Valve Replacement: Results of Three Device Generations of the Wo WO 01-02031 1/2001 CoreValve Revalving System", Circ. Cardiovasc Intervent. Wo WO 03/047468 6/2003 2008;1:167-175 (abstract). WO 03-092554 11/2003 Hanlon, JG et al., "Pre-use intraoperative testing of autologous tissue for valvular surgery: a proof of concept study" J. Heart Valve Dis, Nov. 1999; 8(6); pp. 614-623. WO 2004/082527 9/2004 Nov. 1999; 8(6); pp. 614-623. WO 2007-138572 12/2007 Bech-Hanssen, Odd, M.D. et al., "Aortic Prosthetic Valve Desing and Wo WO 2009-052188 4/2009 Size: Relation to Doppler Echocardiographic Finding and Pressure Recovery—An in Vitro Study" J. Am Soc Echocardiography 2000; | JP | | 4/2005 | - | | | | | | WO 92-17118 10/1992 Materials Research Part A, vol. 52 Iss 2, pp. 365-373, Published WO 98/29057 7/1998 online Aug. 15, 2000, Wiley Periodicals, Inc. WO 99/30646 6/1999 Grube E., et al., "Progress and Current Status of Percutaneous Aortic WO 00/12164 3/2000 Valve Replacement: Results of Three Device Generations of the WO 01-02031 1/2001 CoreValve Revalving System", Circ. Cardiovasc Intervent. WO 03/047468 6/2003 2008;1:167-175 (abstract). WO 03-092554 11/2003 Hanlon, JG et al., "Pre-use intraoperative testing of autologous tissue WO 2004/026124 4/2004 for valvular surgery: a proof of concept study" J. Heart Valve Dis, WO 2004/082527 9/2004 Nov. 1999; 8(6); pp. 614-623. WO 2007-138572 12/2007 Bech-Hanssen, Odd, M.D. et al., "Aortic Prosthetic Valve Desing and WO 2009-052188 4/2009 Size: Relation to Doppler Echocardiographic Finding and Pressure WO 2009/149462 12/2009 Recovery—An in Vitro Study" J. Am Soc Echocardiography 2000; | | | | | | | | | | WO 98/29057 7/1998 online Aug. 15, 2000, Wiley Periodicals, Inc. WO 99/30646 6/1999 Grube E., et al., "Progress and Current Status of Percutaneous Aortic WO 00/12164 3/2000 Valve Replacement: Results of Three Device Generations of the WO 01-02031 1/2001 CoreValve Revalving System", Circ. Cardiovasc Intervent. WO 03/047468 6/2003 2008;1:167-175 (abstract). WO 03-092554 11/2003 Hanlon, JG et al., "Pre-use intraoperative testing of autologous tissue WO 2004/082527 9/2004 for valvular surgery: a proof of concept study" J. Heart Valve Dis, WO 2006-095342 9/2006 Nov. 1999; 8(6); pp. 614-623. WO 2007-138572 12/2007 Bech-Hanssen, Odd, M.D. et al., "Aortic Prosthetic Valve Desing and WO 2009-052188 4/2009 Size: Relation to Doppler Echocardiographic Finding and Pressure WO 2009/149462 12/2009 Recovery—An in Vitro Study" J. Am Soc Echocardiography 2000; | | | | | | | | | | WO 00/12164 3/2000 Valve Replacement: Results of Three Device Generations of the WO WO 01-02031 1/2001 CoreValve Revalving System", Circ. Cardiovasc Intervent. Wo WO 03/047468 6/2003 2008;1:167-175 (abstract). WO 03-092554 11/2003 Hanlon, JG et al., "Pre-use intraoperative testing of autologous tissue Wo WO 2004/082527 9/2004 for valvular surgery: a proof of concept study" J. Heart Valve Dis, Nov. 1999; 8(6); pp. 614-623. WO 2007-138572 12/2007 Bech-Hanssen, Odd, M.D. et al., "Aortic Prosthetic Valve Desing and Wo WO 2009-052188 4/2009 Size: Relation to Doppler Echocardiographic Finding and Pressure Wo WO 2009/149462 12/2009 Recovery—An in Vitro Study" J. Am Soc Echocardiography 2000; | WO | 98/29057 | 7/1998 | online Aug. | 15, 2000, Wiley Perio | dicals, Inc. | | | | WO 01-02031 1/2001 CoreValve Revalving System", Circ. Cardiovasc Intervent. WO 03/047468 6/2003 2008;1:167-175 (abstract). WO 03-092554 11/2003 Hanlon, JG et al., "Pre-use intraoperative testing of autologous tissue WO 2004/026124 4/2004 for valvular surgery: a proof of concept study" J. Heart Valve Dis, WO 2004/082527 9/2004 Nov. 1999; 8(6); pp. 614-623. WO 2006-095342 9/2006 Bech-Hanssen, Odd, M.D. et al., "Aortic Prosthetic Valve Desing and WO 2009-052188 4/2009 Size: Relation to Doppler Echocardiographic Finding and Pressure WO 2009/149462 12/2009 Recovery—An in Vitro Study" J. Am Soc Echocardiography 2000; | | | | | | | | | | WO 03/047468
6/2003 2008;1:167-175 (abstract). WO 03-092554 11/2003 Hanlon, JG et al., "Pre-use intraoperative testing of autologous tissue with the content of | | | | - | | | | | | WO 03-092534 11/2003 Hanlon, JG et al., "Pre-use intraoperative testing of autologous tissue WO 2004/026124 4/2004 for valvular surgery: a proof of concept study" J. Heart Valve Dis, WO 2004/082527 9/2004 Nov. 1999; 8(6); pp. 614-623. WO 2006-095342 9/2006 Bech-Hanssen, Odd, M.D. et al., "Aortic Prosthetic Valve Desing and WO 2009-052188 4/2009 Size: Relation to Doppler Echocardiographic Finding and Pressure WO 2009/149462 12/2009 Recovery—An in Vitro Study" J. Am Soc Echocardiography 2000; | WO | 03/047468 | 6/2003 | | | , one. Cardiovase intervent. | | | | WO 2004/082527 9/2004 for valvular surgery: a proof of concept study" J. Heart Valve Dis, WO 2006-095342 9/2006 Nov. 1999; 8(6); pp. 614-623. WO 2007-138572 12/2007 Bech-Hanssen, Odd, M.D. et al., "Aortic Prosthetic Valve Desing and WO 2009-052188 4/2009 Size: Relation to Doppler Echocardiographic Finding and Pressure WO 2009/149462 12/2009 Recovery—An in Vitro Study" J. Am Soc Echocardiography 2000; | | | | Hanlon, JG | et al., "Pre-use intraop | | | | | WO 2006-095342 9/2006 Nov. 1999; 8(6); pp. 614-623. WO 2007-138572 12/2007 Bech-Hanssen, Odd, M.D. et al., "Aortic Prosthetic Valve Desing and Valve Desing and Pressure Valve Desing and Pressure Valve Desing and Pressure Recovery—An in Vitro Study" J. Am Soc Echocardiography 2000; | | | | | | oncept study" J. Heart Valve Dis, | | | | WO 2009-052188 4/2009 Size: Relation to Doppler Echocardiographic Finding and Pressure WO 2009/149462 12/2009 Recovery—An in Vitro Study" J. Am Soc Echocardiography 2000; | | | 9/2006 | | | Aortic Prosthetic Valve Desing and | | | | WO 2009/149462 12/2009 Recovery—An in Vitro Study" J. Am Soc Echocardiography 2000; | | | | | | | | | | WO 2009-156471 12/2009 13:39-50. | WO | 2009/149462 | 12/2009 | Recovery- | | | | | | | WO | 2009-156471 | 12/2009 | 13:39-50. | | | | | #### (56) References Cited #### OTHER PUBLICATIONS Hasenkam, J.M. et al., "A model for acute haemodynamic studies in the ascending aorta in pigs" Cardiovasc Res, Jul. 1988, 22(7), pp. 464-471. Hiester, E.D. et al., "Optimal bovine pericardial tissue selection sites. I. Fiber architecture and tissue thickness measurements." J. Biomed Mater Res, Feb. 1, 1998; 39(2):207-14. Hufnagel, Charles A., M.D., "Basic Concepts in the Development of Cardiovascular Prosthes" The American Journal of Surgery, vol. 137, Mar. 1979. Hufnagel, Charles.A., MD et al., "In the beginning. Surgical Correction of Aortic Insufficiency" 1954; Ann Thorac Surg May 1989; 47(3), pp. 475-476. Hufnagel, Charles.A., MD et al., "Late follow-up of ball-valve prostheses in the descending thoracic aortia", J. Throrac Cardiovasc Surg, Dec. 1976, 72(6), pp. 900-909. Hufnagel, Charles.A., MD et al., "Surgical Correction of Aortic Insufficiency" Surgery vol. 35, May 1954 No. 5. Hufnagel, Charles A., "Vessels and Valves", Sec. 1: Development of Cardiac Surgery, Chap 7, pp. 43-55. "Introduction to Stereomicroscopy", http://www.microscopyu.com/articles/stereomicroscopy/stereointro.html, May 13, 2009. IOPATCH(R) Tutoplast(R) Processed Pericardium Directions for Use; http://www.iopinc.com/surgeons_and_medical_professionals/iopatch/directions.asp, printed on Jun. 2, 2009. Knudsen, LL et al., "Catheter-implanted prosthetic heart valves. Transluminal catheter implantation of a new expandable artificial heart valve in the descending thoracic aorta in isolated vessels and closed chest pigs" Int J. Artif Organs, May 1993, 16(5); pp. 253-262. Lax, Jorge A., M.D., et al. "Estimation of the Ejection Fraction in Patients with Myocardial Infarction Obtained from the Combined Index of Systolic and Diastolic Left Ventricular Function: A New Method" J of the American Soc of Echocardiography, vol. 13, No. 2. Liao, Jun et al., "Molecular orientation of collagen in intact planar connective tissues under biaxial stretch" Acta Biomateriala, vol. 1, Iss. 1, Jan. 2005, pp. 45-54. Liao, K X et al., "Two-dimensional mechanical and ultrastructural correlates of bovine pericardium for prosthetic valves" ASAIO Trans, Jun. 1, 1991, 37(3); M341-51. Ls, Yu et al., "New Polyurethane valves in new soft artificial heart" ASAIO Trans Jul.-Sep. 1989; 35(3), pp. 301-304. Mirnajafi, A. et al. "The effects of collagen fiber orientation of the flexural properties of pericardial heterograft biomaterials" Biomaterials, Mar. 2005; 26(7): 795-804. Mirzaie, M. et al., "A new storage solution for porcine aortic valves" Ann Thorac Cardiovasc Surg. Apr. 2007;13 (2):102-9. Moazami, N. et al., "Transluminal aortic valve placement. A feasibility study with a newly designed collapsible aortic valve" ASAIO J, Sep.-Oct. 1996, 42(5):M 381-5. Nienaber C., M.D. et al., "Nonsurgical Reconstruction of Thoracic Aortic Dissection by Stent-Graft Placement" N. Eng. J. Med, May 20, 1999, Col. 340, No. 20. Noorlander, Maril L. et al., "A Quantitative Method to Determine the Orientation of Collagen Fibers in the Dermis" The J. of Histochemistry & Cytochemistry, vol. 50(11): 2002, pp. 1469-1474. Nunn, D.B., "Structural Failure of Dacron Arterial Grafts" Seminars in Vascular Surgery, col. 12, No. 1 (March), 1999, pp. 88-91. Optical Microscope, Wikipedia, http://en.wikipedia.org/wiki/ Stereomiscroscope, May 13, 2009. Orthogonality, http://en.wikipedia.org/wiki/Orthogonal, May 13, 2000 Paniagua, David, et al., Percutaneous Heart Valve in the Chronic in Vitro Testing Model, Circulation, 2002, pp. e51-e52, vol. 106, American Heart Association, US. Paniagua, David et al., First Human Case of Retrograde Transcatheter Implantation of an Aortic Valve Prosthesis, Texas Heart Institute Journal, 2005, pp. 91-96, vol. 32, US. "Pathak, CP et al.," "Treatment of bioprosthetic heart valve tissue with long chain alcohol solution to lowercalcification potential" "J Biomed Mater Res A. Apr. 1, 2004;69(1):140-4". Pavenik, Susan, M.D., PhD et al., "Development and Initial Experimental Evaluation of a Prosthetic Aortic Valve for Transcatherter Placement" Cardivascular Radiology, Apr. 1992, pp. 151-154. Pick, Adam, "True or False: An Edwards Lifescience' Tissue Valve Replacement Requires 1,800 Hand-Sewn Stitches" http://heart-valve-surgery.com/heart-surgery-blog/2008/02/26. printed Aug. 13, 2010. Pohl, M. et al., "In vitro testing of artificial heart valves; comparison between Newtonian and non-Newtonian fluids" Artif Argns, Jan. 1996; 20(1); pp. 37-46. Purinya, B. et al., "Biomechanical and Structural Properties of the Explanted Bioprosthetic Valve Leaflets" J. of Biomechanis, vol. 27, Iss 1, Jan. 1994 pp. 1-11 Elsevier Science Ltd, 1993. Sacks, MS et al., "Collagen fiber architecture of bovine pericardium" ASAIO J, Jul. 1, 1994, 40(3):M632-7. Sacks, M S et al., "A small angle light scattering device for planar connective tissue miscrostructural analysis" Ann Biomed Eng, Jul. 1, 1997, 254(4); 678-89. Sacks, Michael S, "Incorporation of experimentally-derived fiber orientation into a structural constitutive model for planar collagenous tissues" J. Biomech Eng, Apr. 1, 2003, 125(2); 280-7. Sacks, Michael S. et al., "Quantification of the fiber architecture and biaxial mechanical behavior of porcine intestinal submucosa" J of Biomedical Research, vol. 46, Iss 1, Jul. 1999, pp. 1-10. Samouillan, V. et al., "Comparison of chemical treatments on the chain dynamics and thermal stability of bovine pericardium collagen" J Biomed Mater Res A. Feb. 1, 2003;64(2):330-8. Schoen, Frederick J., "Tissue heart valves: Current challenges and future research perspectives" J of Biomedical Materials Research, vol. 47, Iss 4, Dec. 15, 1999, pp. 439-465. Sellaro, Tiffany L., "Effects of Collagen Orientation on the Medium-Term Fatigue Response of Heart Valve Biomaterials" 2003, (published thesis) pp. 40-45. Sellaro, Tiffany L. et al., "Effects of Collagen Fiber Orientation on the Response of Biologically Derived Soft Tissue Biomaterials to Cyclic Loading" J. Biomed Mater Res A Jan. 1, 2007; 80(1): 194-205); published online Oct. 13, 2006 by Wiley InterScience. Shandas, Robin PhD et al., "A Method for Determining the Reference Effective Flow Areas for Mechanical Heart Valve Prostheses" Circulation Apr. 25, 2000. Shen, Ming et al., "Effect of ethanol and ether in the prevention of calcification of bioprostheses" Ann Thorac Surg. May 2001;71(5 Suppl):S413-6. Shen, Ming et al., "Protein adsorption in glutaraldehyde-preserved bovine pericardium and porcine valve tissues" The Annals of Thoracic Surgery, 2001; 71:409-409. Simionescu, D et al., "Mapping of glutaraldehyde-treated bovine pericardium and tissue selection for bioprosthetic heart valve" J. Biomed Mater Res, Jun. 1993 01:27(6):697-704. Sun, Wei et al., "Response of heterograft heart valve biomaterials to moderate cyclic loading" J Biomed Mater Res A, Jun. 2004, 69(4); 658-69. Topol, Eric J., "Textbook of Interventional Cardiology", 1990, Chs. 43-44, pp. 831-867. Vyavahare, Narendra et al., "Mechanisms of bioprosthetic heart valve failure: Fatigue causes collagen denaturation and glycosaminoglysan loss" J of Biomedical Research, vol. 446, Iss 1, Jul. 1999, pp. 44-50. Vyavahare, NR et al., "Prevention of Glutaraldehyde-Fixed Bioprosthetic Heart Valve Calcification by Alcohol Pretreatment: Further Mechanistic Studies" J Heart Valve Dis. Jul. 2000;9(4):561- Werner, S. et al., "Testing the Hydrodynamic properties of heart valve prostheses with a new test apparatus", Biomed Tech (Berl) Sep. 1994; 30(9); pp. 204-210. Wiegner, A W et al., "Mechanical and structural correlates of canine pericardium" Circ Res, Sep. 1, 1981m 49(3); 807-14. Yasui, Takeshi et al., "Determination of collagen fiber orientation in human tissue by use of polarization measurement of molecular second-harmonic-generation light", Applied Optics, vol. 42, No. 14, May 10, 2004, pp. 2861-2867. #### (56) References Cited #### OTHER PUBLICATIONS Zioupos, P. et al., "Anisotropic Elasticity
and Strength of Glutaraldehyde Fixed Bovine Pericardium for Use in Pericardial Bioprosthetic Valves" J. Biomed Mater Res., Jan. 1994, 28(1):49-57. Zioupos, P. et al., "Mechanical and Optical anisotrophy of bovine pericardium" Med Biol Eng Comput, Jan. 1992; 30 (1); pp. 76-82. Supplemental Declaration Under 37 CFR 1.131 by inventors filed in U.S. Appl. No. 10/887,688, filed Dec. 15, 2008. Office Action issued in U.S. Appl. No. 10/887,688, dated Nov. 28, 2007 Final Office Action issued in U.S. Appl. No. 10/887,688, dated Jul. 15, 2008. Office Action issued in U.S. Appl. No. 10/887,688, dated Mar. 16, 2009. Examiner Interview Summary issued in U.S. Appl. No. 10/887,688, dated Jun. 12, 2009. Final Office Action issued in U.S. Appl. No. 10/887,688, dated Mar. 2, 2010. Supplemental Declaration Under 37 CFR 1.131 by inventors filed in U.S. Appl. No. 10/887,688, filed Sep. 14, 2009. Supplemental Declaration Under 37 CFR 1.131 by inventors filed in U.S. Appl. No. 10/887,688, filed Feb. 28, 2008. Examiner Interview Summary issued in U.S. Appl. No. 10/887,688, dated Jul. 26, 2010. Office Action issued in U.S. Appl. No. 10/887,688, dated Feb. 12, 2012 Office Action issued Sep. 29, 2010, issued in U.S. Appl. No. 12/228 192. Examiner Interview Summary, dated Apr. 5, 2011 in U.S. Appl. No. 12/228,192. Final Office Action issued Jul. 14, 2011, in U.S. Appl. No. 12/228,192. Office Action issued in U.S. Appl. No. 10/037,266, dated May 8, 2003 Final Office Action issued in U.S. Appl. No. 10/037,266, dated Mar. 9, 2004. PCT International Search Report and Written Opinion, in Application PCT/US2011/026763, dated Nov. 14, 2011. PCT Written Opinion, in Application PCT/US2011/026741, dated Nov. 28, 2011. Applicants' Reply to Written Opinion, filed Feb. 28, 2012, in App. PCT/US2011/026741. Cross-reference is made to U.S. Appl. No. 13/243,980, filed Sep. 23, 2011. Cross-reference is made to PCT Application No. PCT/US11/53120, filed on Sep. 23, 2011. Cross-reference is made to U.S. Appl. No. 13/326,196, filed Dec. 14, 2011 Cross-reference is made to PCT Application No. PCT/US11/64989, filed on Dec. 14, 2011. Cross-reference is made to U.S. Appl. No. 13/171,400, filed Jun. 28, 2011. Non-Final Office Action issued in U.S. Appl. No. 13/038,260, dated Jun. 20, 2012 PCT International Search Report and Written Opinion, in Application PCT/US2011/064989, dated Jun. 28, 2012. PCT International Search Report and Written Opinion, in Application PCT/US2011/053120, dated Apr. 27, 2012. Final Office Action issued May 8, 2015 in U.S. Appl. No. 14/502,453. Declaration Under 37 CFR 1.131 as filed in U.S. Appl. No. 10/887,688 on Dec. 15, 2008, by co-inventors of that application. (Best available copy). Mendelson, Karen et al., "Heart Valve Tissue Engineering: Concepts, Approaches, Progress, and Challenges" Ann Biomed Eng, Dec. 2006; 34(12); pp. 1799-1819; published online Oct. 12, 2006 doi:10. 1007/s/10439-006-9163-z. Sacks, MS et al., "Bioprosthetic heart valve heterograft biomaterials: structure, mechanical behavior and computational simulation" Expert Rev Med Devices, Nov. 2006; 3(6): pp. 817-834 (Abstract only). Schmidt, Dorthe et al., "Tissue engineering of heart valves using decellularized xenogeneic of polymeric starter matrices" Philos Trans R Soc Lond B Bio Sci., Aug. 29, 2007, 362(1484); 1505-1512; published online Jun. 22, 2007, doi: 10.1098/rstb.2007.2131. Office Action issued in U.S. Appl. No. 14/136,516, dated Mar. 10, 2014. Notice of Allowance issued in U.S. Appl. No. 14/136,516, dated Mar. 31, 2014. Cross-reference is made to U.S. Appl. No. 14/253,650, filed Apr. 15, 2014, and its associated Preliminary Amendment. Cross-reference is made to U.S. Appl. No. 14/253,656, filed Apr. 15, 2014, and its associated Preliminary Amendment. Cross-reference is made to U.S. Appl. No. 14/268,184, filed May 2, 2014, and its associated Preliminary Amendment. Cross-reference is made to U.S. Appl. No. 14/268,190, filed May 2, 2014, and its associated Preliminary Amendment. Cross-reference is made to U.S. Appl. No. 14/284,049, filed May 21, 2014, and its associated Preliminary Amendment. Cross-reference is made to U.S. Appl. No. 14/284,063, filed May 21, 2014, and its associated Preliminary Amendment. Office Action issued Jun. 9, 12014, in U.S. Appl. No. 14/253,650. Hilbert et al., "Biomechanics: Allograft Heart Valves," Cardiac Reconstructions with Allograft Tissues, Springer, New York (2005), Office Action issued Jul. 8, 2014, in U.S. Appl. No. 14/253,656. Office Action issued Aug. 15, 2014, in U.S. Appl. No. 14/284,063. Chew, G.G. et al., "Simulation of Damage in a Porcine Prosthetic Heart Valve" J. Med. Eng. Technol., Sep.-Oct. 1999; 23(5): 178-89 (Abstract). Christie G.W. et al., "On Stress Reduction in Bioprosthetic Heart Valve Leaflets by the Use of a Flexible Stent" J. Card Surg, Dec. 1991; 6(4) pp. 476-481 (Abstract). Paniagua, David et al., Abstract 4622: "Percutaneous Implantation of a Low Profile, Dry Membrane, Heart Valve in an Integrated Delivery System in the Aortic and Pulmonary Positions: One-month Animal Results," Circulation, American Heart Association, Inc., 2009; 120: S982. Office Action issued Sep. 11, 2014, in U.S. Appl. No. 14/268,190. Office Action issued Sep. 3, 2014, in U.S. Appl. No. 14/284,049. Office Action issued Sep. 12, 2014, in U.S. Appl. No. 14/268,184. Final Office Action issued Sep. 25, 2014, in U.S. Appl. No. 14/253,656. Notice of Allowance issued Oct. 7, 2014, in U.S. Appl. No. 14/253,656. Final Office Action issued Nov. 7, 2014, in U.S. Appl. No. 14/253,650. Cross-reference is made to U.S. Appl. No. 14/502,453, filed Sep. 30, 2014, and its associated Preliminary Amendment. Office Action issued Dec. 5, 2014 in U.S. Appl. No. 14/502,453. PCT International Search Report and Written Opinion, in Application PCT/US2011/042252, dated Apr. 6, 2011. Office Action issued Jul. 6, 2015, in U.S. Appl. No. 13/675,665. * cited by examiner FIG.1 FIG.2 FIG.3A FIG.3B FIG.5 FIG.6 FIG. 7 FIG.8 Fig. 9A FIG. 9B FIG. 9C ### PERCUTANEOUSLY IMPLANTABLE REPLACEMENT HEART VALVE DEVICE AND METHOD OF MAKING SAME #### CONTINUITY INFORMATION The present application is a continuation application of U.S. patent application Ser. No. 12/228,192 filed on Aug. 8, 2008, now U.S. Pat. No. 8,109,995, which is a divisional application of U.S. patent application Ser. No. 10/887,688, filed on Jul. 10, 2004; the present application is also a continuation application of U.S. patent application Ser. No. 10/887,688, filed on Jul. 10, 2004, which is a continuation-in-part of U.S. patent application Ser. No. 10/037,266, filed on Jan. 4, 2002. All of the foregoing applications are incorporated herein by reference in their entireties. #### BACKGROUND OF THE INVENTION #### 1. Field of the Invention The present invention is in the field of heart valve replacement. More specifically, the present invention is directed to a method of making a percutaneously implantable replacement heart valve. #### 2. Description of Related Art There have been numerous efforts in the field of heart valve replacement to improve both the durability and effectiveness of replacement heart valves as well as the ease of implantation. A brief description of heart valves and heart function ³⁰ follows to provide relevant background for the present invention. There are four valves in the heart that serve to direct the flow of blood through the two sides of the heart in a forward direction. On the left (systemic) side of the heart are: 1) the mitral valve, located between the left atrium and the left ventricle, and 2) the aortic valve, located between the left ventricle and the aorta. These two valves direct oxygenated blood coming from the lungs through the left side of the heart into the aorta for distribution to the body. On the right (pulmonary) side of the heart are: 1) the tricuspid valve, located between the right atrium and the right ventricle, and 2) the pulmonary valve, located between the right ventricle and the pulmonary artery. These two valves direct de-oxygenated 45 blood coming from the body through the right side of the heart into the pulmonary artery for distribution to the lungs, where it again becomes re-oxygenated to begin the circuit anew. Heart valves are passive structures that simply open and close in response to differential pressures on either side of the 50 particular valve. They consist of moveable "leaflets" that are designed simply to open and close in response to differential pressures on either side of the valve's leaflets. The mitral valve has two leaflets and the tricuspid valve has three. The aortic and pulmonary valves are referred to as "semilunar 55 valves" because of the unique appearance of their leaflets, which are more aptly termed "cusps" and are shaped somewhat like a half-moon. The aortic and pulmonary valves each have three cusps. In general, the components of heart valves include the 60 valve annulus, which will remain as a roughly circular open ring after the leaflets of a diseased or damaged valve have been removed; leaflets or cusps; papillary muscles which are attached at their bases to the interior surface of the left or right ventricular wall; and multiple chordae tendineae, which 65 couple the valve leaflets or cusps to the papillary muscles. There is no one-to-one chordal connection between the leaf- 2 lets and the papillary muscles; instead, numerous chordae are present, and chordae from each papillary muscle attach to both of the valve leaflets. When the left ventricular wall relaxes so that the ventricular chamber enlarges and draws in blood, the leaflets of the mitral valve separate and the valve opens. Oxygenated blood flows in a downward direction through the valve, to fill the expanding ventricular cavity. Once the left ventricular cavity has filled, the left ventricle contracts, causing a rapid rise in the left ventricular cavitary pressure. This causes the mitral valve to close while the aortic valve opens, allowing the oxygenated
blood to be ejected from the left ventricle into the aorta. The chordae tendineae of the mitral valve prevent the mitral leaflets from prolapsing back into the left atrium when the left ventricular chamber contracts. The three leaflets, chordae tendineae, and papillary muscles of the tricuspid valve function in a similar manner, in response to the filling of the right ventricle and its subsequent contraction. The cusps of the aortic valve also respond passively to pressure differentials between the left ventricle and the aorta. When the left ventricle contracts, the aortic valve cusps open to allow the flow of oxygenated blood from the left ventricle into the aorta. When the left ventricle relaxes, the aortic valve cusps reapproximate to prevent the blood which has entered the aorta from leaking (regurgitating) back into the left ventricle. The pulmonary valve cusps respond passively in the same manner in response to relaxation and contraction of the right ventricle in moving de-oxygenated blood into the pulmonary artery and thence to the lungs for reoxygenation. Neither of these semilunar valves has associated chordae tendineae or papillary muscles. Problems that can develop with heart valves consist of stenosis, in which a valve does not open properly, and/or insufficiency, also called regurgitation, in which a valve does not close properly. In addition to stenosis and insufficiency of heart valves, heart valves may need to be surgically repaired or replaced due to certain types of bacterial or fungal infections in which the valve may continue to function normally, but nevertheless harbors an overgrowth of bacteria (vegetation) on the leaflets of the valve that may embolize and lodge downstream in a vital artery. If such vegetations are on the valves of the left side (i.e., the systemic circulation side) of the heart, embolization may occur, resulting in sudden loss of the blood supply to the affected body organ and immediate malfunction of that organ. The organ most commonly affected by such embolization is the brain, in which case the patient suffers a stroke. Thus, surgical replacement of either the mitral or aortic valve (left-sided heart valves) may be necessary for this problem even though neither stenosis nor insufficiency of either valve is present. Likewise, bacterial or fungal vegetations on the tricuspid valve may embolize to the lungs resulting in a lung abscess and therefore, may require replacement of the tricuspid valve even though no tricuspid valve stenosis or insufficiency is present. These problems are treated by surgical repair of valves, although often the valves are too diseased to repair and must be replaced. If a heart valve must be replaced, there are currently several options available, and the choice of a particular type of artificial valve depends on factors such as the location of the valve, the age and other specifics of the patient, and the surgeon's experiences and preferences. Currently in the United States over 100,000 defective heart valves are replaced annually, at an approximate cost of \$30-50,000 per procedure, and thus it would be desirable if heart valves could be replaced using minimally invasive techniques and without having to repeat the procedure within a matter of years due to the lack of durability of the replacement heart valve. It would be especially advantageous if a defective heart valve could be removed via an endovascular procedure, that is, a procedure where the invasion into the body is through a blood vessel such as the femoral artery. The procedure is then carried out percutaneously and transluminally using the vascular system 5 to convey appropriate devices to the position in the body wherein it is desired to carry out the desired procedure. An example of such a procedure would be angioplasty, wherein a catheter carrying a small balloon at its distal end is manipulated through the body's vessels to a point where there is a 10 blockage in a vessel. The balloon is expanded to create an opening in the blockage, and then the balloon is deflated and the catheter and balloon are removed from the vessel. Endovascular procedures have substantial benefits both procedures require minimal invasion of the human body, and there is consequently considerable reduction and in some instances even elimination, of the use of a general anesthesia and much shorter hospital stays. Replacement heart valves can be categorized as either arti- 20 ficial mechanical valves, transplanted valves and tissue valves. Replacement heart valves are designed to optimize hemodynamic performance, thrombogenicity and durability. Another factor taken into consideration is the relative ease of surgical implantation. Mechanical valves are typically constructed from nonbiological materials such as plastics, metals and other artificial materials which, while durable, are expensive and prone to blood clotting which increases the risk of an embolism. Anticoagulants taken to help against blood clotting can further 30 complicate the patient's health due to increased risks for hemorrhages. Transplanted valves are natural valves taken from cadavers. These valves are typically removed and frozen in liquid nitrogen, and are stored for later use. They are typically fixed 35 in glutaraldehyde to eliminate antigenicity and are sutured in place, typically with a stent. Artificial tissue valves are valves constructed from animal tissue, such as bovine or porcine tissue. Efforts have also been made at using tissue from the patient for which the valve will 40 be constructed. Most tissue valves are constructed by sewing the leaflets of pig aortic valves to a stent to hold the leaflets in proper position, or by constructing valve leaflets from the pericardial sac of cows or pigs and sewing them to a stent. The porcine or 45 bovine tissue is chemically treated to alleviate any antigenicity. The pericardium is a membrane that surrounds the heart and isolates it from the rest of the chest wall structures. The pericardium is a thin and very slippery, which makes it difficult for suturing in a millimetricly precise way. The method of 50 making the replacement heart valve of the present invention solves this problem through a process that includes drying and compressing the pericardium using photo-mechanical compression in such a way that makes it possible to handle and fold the material more easily. For example, one prior replacement heart valve requires each sculpted leaflet to be trimmed in a way that forms an extended flap, which becomes a relatively narrow strand of tissue near its tip. The tip of each pericardial tissue strand is sutured directly to a papillary muscle, causing the strand to 60 mimic a chordae tendineae. Each strand extends from the center of a leaflet in the valve, and each strand is sutured directly to either an anterior and posterior papillary muscle. This requires each leaflet to be positioned directly over a papillary muscle. This effectively rotates the leaflets of the 65 valve about 90 degrees as compared to the leaflets of a native valve. The line of commissure between the leaflets, when they are pressed together during systole, will bisect (at a perpendicular angle) an imaginary line that crosses the peaks of the two papillary muscles, instead of lying roughly along that line as occurs in a native valve. A different approach to creating artificial tissue valves is described in U.S. Pat. No. 5,163,955 to Calvin, et al. and U.S. Pat. Nos. 5,571,174 and 5,653,749 to Love. Using a cutting die, the pericardial tissue is cut into a carefully defined geometric shape, treated with glutaraldehyde, then clamped in a sandwich-fashion between two stent components. This creates a tri-leaflet valve that resembles an aortic or pulmonary valve, having semilunar-type cusps rather than atrioventricular-type leaflets. U.S. Pat. No. 3,671,979 to Moulopoulos describes an from the standpoint of health and safety as well as cost. Such 15 endovascularly inserted conical shaped umbrella-like valve positioned and held in place by an elongated mounting catheter at a supra-annular site to the aortic valve in a nearby arterial vessel. The conical end points toward the malfunctioning aortic valve and the umbrella's distal ends open up against the aorta wall with reverse blood flow, thereby preventing regurgitation. > U.S. Pat. No. 4,056,854 to Boretos describes an endovascularly inserted, catheter mounted, supra-annular valve in which the circular frame abuts the wall of the artery and attached flaps of flexible membrane extend distally in the vasculature. The flaps lie against the artery wall during forward flow, and close inward towards the central catheter to prevent regurgitation during reverse blood flow. The Boretos valve was designed to be positioned against the artery wall during forward flow, as compared to the mid-center position of the Moulopoulos valve, to reduce the stagnation of blood flow and consequent thrombus and embolic formation expected from a valve at mid-center position. > The main advantage of tissue valves is that they do not cause blood clots to form as readily as do the mechanical valves, and therefore, they do not absolutely require systemic anticoagulation. The major disadvantage of tissue valves is that they lack the long-term durability of mechanical valves. Tissue valves have a significant failure rate, usually within ten years following implantation. One cause of these failures is believed to be the chemical treatment of the animal tissue that prevents it from being antigenic to the patient. In addition, the presence of extensive suturing prevents the artificial tissue valve from being anatomically accurate in comparison to a normal heart valve, even in the aortic valve position. A shortcoming of prior artificial tissue valves has been the inability to effectively simulate the exact anatomy of a native heart valve. Although transplanted human or porcine aortic valves have the gross
appearance of native aortic valves, the fixation process (freezing with liquid nitrogen, and chemical treatment, respectively) alters the histologic characteristics of the valve tissue. Porcine and bovine pericardial valves not only require chemical preparation (usually involving fixation with glutaraldehyde), but the leaflets must be sutured to clothcovered stents in order to hold the leaflets in position for proper opening and closing of the valve. Additionally, the leaflets of most such tissue valves are constructed by cutting or suturing the tissue material, resulting in leaflets that do not duplicate the form and function of a real valve and are more susceptible to failure. #### SUMMARY OF THE INVENTION The present invention is a replacement heart valve device and method of making same. The replacement heart valve device, in a preferred embodiment, comprises a stent made of stainless steel or self-expanding nitinol and a completely newly designed artificial biological tissue valve disposed within the inner space of the stent. The cusp or leaflet portion of the valve means is formed by folding of the pericardium material preferably used to create the valve without cutting of slits to form leaflets or suturing or otherwise affixing of separate leaflet portions. Other forms of tissue and suitable synthetic materials can also be used for the valve, formed in a sheet of starting material. The folded design provides a number of advantages over prior designs, including improved resistance to tearing at suture lines. The cusps/leaflets open in response to blood flow in one direction and close in response to blood flow in the opposite direction. Preferably the tubular portion of the valve means contains the same number of cusps as the native valve being replaced, in substantially the same 15 size and configuration. The outer surface of the valve means is attached to the stent member. The replacement heart valve device is preferably implanted using a delivery system having a central part which consists of a flexible hollow tube catheter that allows a metallic guide 20 wire to be advanced inside it. The stented valve is collapsed over the central tube and it is covered by a movable sheath. The sheath keeps the stented valve in the collapsed position. Once the cover sheath is moved backwards, the stented valve can be deployed. The endovascular stented-valve, in a preferred embodiment, is a glutaraldehyde fixed mammal pericardium or synthetic biocompatible material which has two or three cusps that open distally to permit unidirectional blood flow. The stent can either be self-expanding or the stent can be expandable through use of a balloon catheter. The present invention also comprises a method of making a replacement heart valve device. In order to make the valve, the pericardium starting material is isolated and all the fat tissue and extra fibers are removed. The biological membrane material is cleaned by mechanical separation of unwanted 35 layers using hydromechanical force means. Once the pericardium is completely clean, the material is dried in order to make it easier to handle and fold. Preferably, this drying is done by exposing the biocompatible membrane material to photo-mechanical compression to remove all lipids from the 40 pericardium or other biocompatible membrane material and to cause protein denaturalization, transforming the material into a stronger and more homogeneous surface. The valve is formed by taking a flat sheet of the material and folding in such a way that forms a three-leaflet or other number of leaflet 45 valve. Then it is placed in a sequence of solutions, one of isopropyl alcohol of about 70-100%, one of ethanol of about 70-100%, one of glycerol and one of glutaraldehyde, preferably at a concentration of about 0.07-25% for approximately 36 hours. The material is dried in order to make it easier to 50 handle and fold. Preferably this drying is done by exposing the biocompatible membrane material to light and then mechanically compressing the material to cause protein denaturation. This results in material that is stronger and more homogeneous. The valve is formed by taking a flat sheet of 55 bovine or porcine pericardium and folding it in such a way that forms a three-leaflet valve. The valve can also be made in the same manner from fresh, cryopreserved or glutaraldehyde fixed allografts or xenografts or synthetic non-biological, non-thrombogenic material. The folding of the pericardium 60 material to create the cusps or leaflets reduces the extent of suturing otherwise required, and resembles the natural form and function of the valve leaflets. The cleaning, pressing and drying technique used to create the valve material makes the folding more practicable. The valve is rehydrated after being 65 formed. The method of the present invention also greatly reduces the risk of tearing of the cusps or leaflets, since they 6 are formed by folding a single uncut portion of material forming the valve rather than being attached by suturing. Accordingly, in at least one embodiment, a method of making a percutaneously implantable replacement heart valve device is provided, wherein a biocompatible tissue material of the percutaneously implantable replacement heart valve device comprises bovine pericardium tissue. In at least one embodiment, a method of making a percutaneously implantable replacement heart valve device is provided, wherein a biocompatible tissue material of the percutaneously implantable replacement heart valve device comprises porcine pericardium tissue. Once the endovascular implantation of the prosthetic valve device is completed in the host, the function of the prosthetic valve device can be monitored by the same methods as used to monitor valve replacements done by open heart surgery. Routine physical examination, periodic echocardiography or angiography can be performed. In contrast to open heart surgery, however, the host requires a short recovery period and can return home within one day of the endovascular procedure. The replacement heart valve device of the present invention can be used in any patient where bioprosthetic valves are indicated, namely elderly patients with cardiac valve diseases, and patients unable to tolerate open heart procedures or life-long anticoagulation medication and treatment. The present invention can be practiced in applications with respect to each of the heart's valves. #### BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 depicts a side perspective view of the replacement heart valve device of the present invention in one embodiment with the valve in the closed position. FIG. 2 depicts the folds which form the leaflets or cusps of the replacement heart valve of the present invention in one embodiment. FIGS. 3A and 3B depict a preferred procedure for folding the pericardium tissue starting material to create the replacement heart valve of the present invention. FIG. 4 depicts a side perspective view of the replacement heart valve device of the present invention in one embodiment represented as if implanted within an artery. FIG. 5 depicts a side view of one embodiment of the replacement heart valve device of the present invention mounted within a self-expanding stent, with the stent in the expanded position. FIG. 6 depicts a side perspective view of one embodiment of the replacement heart valve device of the present invention mounted within a self-expanding stent in the collapsed position. FIG. 7 depicts the suture points of one embodiment of the replacement heart valve device of the present invention. FIG. **8** depicts the implantation/delivery system used with the present invention in a preferred embodiment. FIGS. 9A, 9B and 9C depict a representation of a sheet of biocompatible valve material showing preferred folds. # DESCRIPTION OF A PREFERRED EMBODIMENT The present invention comprises a percutaneously implantable replacement heart valve and a method for making same. The artificial heart valve device of the present invention is capable of exhibiting a variable diameter between a compressed or collapsed position and an expanded position. A preferred embodiment of the replacement heart valve device according to the present invention is set forth in FIG. 5. The replacement heart valve device comprises a stent member 100 and a flexible valve means 200. The stent member 100 is preferably self-expanding, although balloon-expandable stents can be used as well, and has a first polygonal shape in its compressed or collapsed configuration and a second, larger polygonal shape in its expanded configuration. Referring to FIG. 1, the valve means 200 comprises a generally tubular portion 210 and, preferably, a peripheral upstanding cusp or leaflet portion 220. The valve means 200 is disposed within the cylindrical stent member 100 with the tubular portion 210 transverse of and at some acute angle relative to the stent walls. The diameter of the tubular portion 210 is substantially the same as the inside diameter of the stent member in its initial expanded configuration. The peripheral upstanding cusp or leaflet portion 220 is disposed on valve means 200 substantially parallel to the walls of the stent member similar to a cuff on a shirt. The cusp or leaflet portion 220 of the valve means 200 is generally tubular in shape and comprises three leaflets 221, 222 and 223 as shown, although 20 it is understood that there could be from two to four leaflets. The tubular portion of the valve means 200 is attached to the stent member 100 by a plurality of sutures 300, as depicted in FIG. 7. The leaflet portion **220** of the valve means **200** extends across or transverse of the cylindrical stent **100**. The leaflets **221**, **222** and **223** are the actual valve and allow for one-way flow of blood. The leaflet portion **220** as connected to the rest of the valve resembles the cuff of a shirt. FIG. **9** depicts the folds preferred for valve cusp and leaflet
formation involving three leaflets. The configuration of the stent member **100** and the flexible, resilient material of construction allows the valve to collapse into a relatively small cylinder as seen in FIG. **6**. The replacement heart valve will not stay in its collapsed configuration without being restrained. Once the restraint is removed, the self-expanding stent member **100** will cause the artificial heart valve to take its expanded configuration, as seen in FIG. **5**. #### Stent Member The stent member 100 preferably comprises a self-expanding nickel-titanium alloy stent, also called "nitinol," in a sine wave-like configuration as shown in FIG. 5. An enlarged view 45 of a preferred embodiment of the stent member for use in the replacement heart valve of the invention is depicted in FIG. 5. The stent member 100 includes a length of wire 110 formed in a closed zigzag configuration. The wire can be a single piece, stamped or extruded, or it could be formed by welding the free 50 ends together. The straight sections of the stent member 100 are joined by bends. The stent is readily compressible to a small cylindrical shape as depicted in FIGS. 6 and 8, and resiliently self-expandable to the shape shown in FIG. 5. The stent member 100 of the artificial heart valve device of 55 the present invention may be made from various metal alloys, titanium, titanium alloy, nitinol, stainless steel, or other resilient, flexible non-toxic, non-thrombogenic, physiologically acceptable and biocompatible materials. The configuration may be the zigzag configuration shown or a sine wave configuration, mesh configuration or a similar configuration which will allow the stent to be readily collapsible and self-expandable. When a zigzag or sine wave configured stent member is used, the diameter of the wire from which the stent is made is preferably from about 0.010 to 0.035 inches and 65 still, preferably from about 0.012 to 0.025 inches. The diameter of the stent member will be from about 1.5 to 3.5 cm, 8 preferably from about 1.75 to 3.00 cm, and the length of the stent member will be from about 1.0 to 10 cm, preferably from about 1.1 to 5 cm. The stent used in a preferred embodiment of the present invention is fabricated from a "shaped memory" alloy, nitinol, which is composed of nickel and titanium. Nitinol wire is first fashioned into the desired shape for the device and then the device is heat annealed. A meshwork of nitinol wire of approximately 0.008 inch gauge is formed into a tubular structure with a minimum central diameter of 20 min to make the stent. Away from its central portion, the tubular structure flares markedly at both ends in a trumpet-like configuration. The maximum diameter of the flared ends of the stent is approximately 50 mm. The purpose of the stent is to maintain a semi-rigid patent channel through the diseased cardiac valve following its implantation. When the components of the replacement heart valve device are exposed to cold temperatures, they become very flexible and supple, allowing them to be compressed down and pass easily through the delivery sheath. A cold temperature is maintained within the sheath during delivery to the deployment site by constantly infusing the sheath with an iced saline solution. Once the valve components are exposed to body temperature at the end of the sheath, they instantaneously reassume their predetermined shapes, thus allowing them to function as designed. Preferably the stent member 100 carries a plurality of barbs extending outwardly from the outside surface of the stent member for fixing the heart valve device in a desired position. More preferably the barbs are disposed in two spaced-apart, circular configurations with the barbs in one circle extending in an upstream direction and the barbs in the other circle extending in a downstream direction. It is especially preferable that the barbs on the inflow side of the valve point in the direction of flow and the barbs on the outflow side point in the direction opposite to flow. It is preferred that the stent be formed of titanium alloy wire or other flexible, relatively rigid, physiologically acceptable material arranged in a closed zigzag configuration so that the stent member will readily collapse and expand as pressure is applied and released, respectively. ## Valve Means The valve means 200 is flexible, compressible, host-compatible, and non-thrombogenic. The valve means 200 can be made from various materials, for example, fresh, cryopreserved or glutaraldehyde fixed allografts or xenografts. Synthetic biocompatible materials such as polytetrafluoroethylene, polyester, polyurethane, nitinol or other alloy/metal foil sheet material and the like may be used. The preferred material for the valve means 200 is mammal pericardium tissue, particularly juvenile-age animal pericardium tissue. The valve means 200 is disposed within the cylindrical stent member 100 with the tubular portion 210 transverse of and at some acute angle relative to the stent walls. The diameter of the tubular portion 210 is substantially the same as the inside diameter of the stent member 100 in its initial expanded configuration. The peripheral upstanding cusp or leaflet portion 220 is disposed substantially parallel to the walls of the stent member 100 similar to a cuff on a shirt. The cusp or leaflet portion 220 of the valve means 200 is formed by folding of the pericardium material used to create the valve. FIGS. 3A and 3B depict the way the sheet of heart valve starting material is folded. The starting material is preferably a flat dry sheet, which can be rectangular or other shaped. The cusps/leaflets 221, 222 and 223 open in response to blood flow in one direction and close in response to blood flow in the opposite direction. Preferably the cusp or leaflet portion 220 of the valve means 200 contains the same number of cusps as the native valve being replaced, in substantially the same size and configuration. FIGS. 9A-9C depict a preferred configuration for folds to create the leaflets/cusps. The leaflet forming portion is a single, continuous, uncut layer affixed to the interior of the cuff layer to form the leaflets/ cusps, unlike prior efforts that have involved suturing of three separate leaflet/cusp portions onto the main valve body portion. The leaflets are formed from the free edge of the material after forming the cuff portion. Referring now to FIGS. 9-A, 9B, and 9C, with flat sheet on a table, a person facing the sheet would create a cuff at the upper border of sheet by folding the horizontal top edge away/downwardly (fold no. 1). The leaflet portion is formed by folding the sheet's lower half towards the folder/upwardly, as shown in FIG. 9A (fold no. 2). The sheet, now with the upper cuff and bottom inward fold, is folded inwardly at two preferably equidistant vertical points as shown in FIG. 9B to create the leaflet/cusp portion (folds nos. 20 3 and 4). The leaflets/cusps are formed by folding fold nos. 6, 7 and 8 after the two opposite vertical edges of sheet are joined to create a cylindrical valve shape, depicted in FIGS. 1 and 3B. The inner leaflet layer is preferably attached to the outer cuff layer by curved or straight continuous suturing. 25 Although a preferred embodiment of the invention comprises a single piece of valve material folded to create the valve body and a leaflet-forming portion that has no cuts or sutures, the inventors have discovered that as long as the leaflet portion of the valve itself is formed from a single piece of biocompatible 30 valve material, the other portions of the valve can be formed by suturing of one or more separate pieces of material without losing the novel and improved qualities of the present invention. This allows for the valve to be made even stronger, more durable and easier to make. This alternate embodiment com- 35 prises a leaflet forming layer made of a single piece of valve material attached to a separate piece forming the valve body having a folded cuff portion. The single piece leaflet forming layer is preferably cylindrical in shape and can be formed with or without folding. In this embodiment the single piece 40 leaflet layer can itself be attached to the stent with or without a cylindrical cuff portion. Attachment is preferably by suturing, particularly continuous single or double sutures. #### Method of Making Replacement Heart Valve Device The present invention also comprises a method of making a replacement heart valve device. In order to make the valve, the biocompatible tissue material is isolated and all the fat accomplished by using a hydromechanical force-based cleaning device to separate tissue layers and hydration with distilled water to remove unwanted layers. Once the pericardium is completely clean, it is subjected to photo-mechanical compression, then the valve is formed and placed in sequential 55 solutions of isopropyl alcohol of about 70-100%, ethanol of about 70-100%, glycerol and glutaraldehyde preferably at a concentration of about 0.07-25% for about 36 hours, respectively. The material is preferably photomechanically compressed to remove lipids and produce protein coagulation to 60 make the surface smoother and more compact and biocompatible, decreasing the molecular distance of collagen fibers. The exposure to light and mechanical compression cause protein denaturation making the material stronger and more homogeneous and biocompatible. Gas sterilization can also 65 be used to sterilize the tissue membrane material. The valve is formed by taking a flat sheet of the material and folding it in 10 such a way that forms a three-leaflet or desired number of leaflet valve as shown in FIGS. 3A and 3B and/or FIGS. 9A, 9B and 9C. The folding of the pericardium material to create the cusps or leaflets reduces the extent of suturing otherwise required, and resembles the natural form and function of the valve leaflets. It also greatly reduces the risk
of tearing of the cusps or leaflets, since they are integral to the valve rather than being attached by suturing. In a preferred embodiment, the single continuous piece of membrane is folded inward to form an inner leaflet layer within the outer cuff. The single leaflet layer is then attached to the cuff layer to form valve cusps in one of three preferred ways: (i) by curved or straight continuous single or double sutures that affix and form the bases or recesses of the valve cusps; (ii) by lengthwise suture lines attaching the leaflet layer to the cuff layer with the bases or recesses of the valve cusps being thus formed of the folded edge of the membrane; (iii) by further folding of the membrane into lengthwise pleats secured by lengthwise suture attaching the leaflet layer to the cuff layer with the bases or recesses of the valve cusps being thus formed of the folded edge of the membrane, done for the purpose of giving greater strength and durability to the attachment points of the leaflet layer. In order to make the pericardium material less slippery and easier to fold, the pericardium is dried, preferably with artificial light using a multi-watt lamp with the pericardium or other biocompatible membrane material placed in a flat aluminum surface to dry it homogeneously. A photomechanical drying machine can also be used. The final result is a homogeneous tissue that looks like plastic paper and makes it easy to manipulate to fold and suture the valve. Once the valve is formed, it is re-hydrated by placing it in a solution of water and 70% alcohol. In approximately 3 days the valve is fully rehydrated. The suturing of membrane layers to form the valve is done with single, double, or more continuous suture material. This form of suturing has great advantages for durability and avoidance of damage to the membrane and can be performed by sewing machines. The attachment points of the leaflet layer to the cuff layer may be reinforced by folding an additional layer of membrane over the attachment point before suturing, this layer being formed of a projected tab of the continuous piece of leaflet membrane. The free edge of the leaflet layer may be straight or curved, and this free edge forming the free edges of the individual leaflets may be con-45 toured in parabolic or curved shape. #### Attachment of the Valve Means to the Stent Member The valve means 200 is then attached to the inner channel tissue and extra fibers are removed. Cleaning is preferably 50 of the stent member 100 by suturing the outer surface of the valve means' pericardium material to the stent member. FIG. 7 depicts preferred suture points of one embodiment of the present invention: 3-point fixation or 6-point fixation at each border of the stent. Other fixation schemes can be utilized, such as, by way of non-limiting example, fixation on both borders 18 points at each end following a single plane and 36 fixation points following to adjacent vertical planes. The use of only one plane of fixation points helps prevent systolic collapse of the proximal edge of the valve means. A fold on the border of the pericardium material prevents tearing. The attachment position of the valve is preferably closer to the proximal and wider part of the stent. > The sequence of steps can vary. The pericardium material can be fixed in glutaraldehyde before attachment to the stent or the valve can be formed and then fixed with glutaraldehyde after mounting it in the stent. One observation noted is that the material becomes whiter and apparently increases its elastic- ity. 1 mm vascular clips keep the cusps coapted while fixing them in glutaraldehyde. The use of metallic clips to keep both cusps adjacent to each other after 24 hours of fixation in glutaraldehyde helps to educate the material and make the primary position of the valve cusps adjacent to each other. After the clips are removed, there are no lesions to the valve. Different suture materials can be used, including, in a preferred embodiment, Prolene 1-0 to 8-0 and Mersilene 1-0 to 8-0 which is a braided suture. #### Implantation of Replacement Heart Valve Device The replacement heart valve device of the present invention is preferably used in surgical procedures involving the percutaneous and transluminal removal of the diseased or 15 defective heart valve and the percutaneous and transluminal implantation of the new heart valve described above. The defective heart valve is removed by a suitable modality, such as, for example, laser, ultrasound, mechanical, or other suitable forms of delivery of energy, or phacoemulsion, includ- 20 ing, but not limited to, laser lithotripsy, mechanical lithotripsy, electrohydraulic lithotripsy, and laser or mechanical ablation. To remove the native heart valve that is being replaced, a guidewire is inserted percutaneously and transluminally using standard vascular or angiography techniques. 25 The distal end of the guidewire is manipulated to extend through and across the defective heart valve. Then a catheter is advanced distally through the femoral artery to a point proximal to the defective heart valve, between the origin of the coronary artery and the origin of the right subclavian 30 artery. The position of the distal end of catheter can be monitored by observation of radiopaque markers. Collector member is preferably inflated and occludes the aorta at a point between the origin of the coronary artery and the right subclavian artery. Next, a balloon and cutting tool are advanced 35 through the catheter so that the cutting tool and uninflated balloon are distal to the defective heart valve. Optionally an additional step, such as balloon dilatation or atherectomy, may be required to provide a passageway through the heart valve. A catheter is also placed into the coronary sinus via a 40 transjugular puncture. This catheter is used for infusion of blood or cardioplegia solution during the portion of the procedure when the aorta is occluded. The absence of valves in the cardiac venous system allows retrograde flow so that there will be an effluence of fluid from the coronary arteries. This 45 flow of fluid is desired to prevent embolization of material into the coronary arteries during the procedure. Once the cutting tool is in place, the balloon is inflated and flexible shaft is rotated. Once the cutting tool has reached the appropriate rotation speed, the cutting tool is pulled proximally to 50 remove the defective heart valve. The balloon and the cutting tool are spaced apart so that the inflated balloon will be stopped by the perimeter, unremoved portion of the defective heart valve, which will signal the physician that the valve has been removed, as well as protect the heart and aorta from 55 damage from the valve removal device. Once it is determined that the defective heart valve has been removed, the cutting tool is slowed or stopped altogether and the balloon is deflated. The cutting tool and the deflated balloon are pulled proximally through catheter. Then, a catheter containing an 60 artificial heart valve is inserted and the artificial heart valve is placed as described above. The delivery and implantation system of the replacement artificial heart valve of the present invention percutaneously and transluminally includes a flexible catheter 400 which 65 may be inserted into a vessel of the patient and moved within that vessel as depicted in FIG. 8. The distal end 410 of the 12 catheter 400, which is hollow and carries the replacement heart valve device of the present invention in its collapsed configuration, is guided to a site where it is desired to implant the replacement heart valve. The catheter has a pusher member 420 disposed within the catheter lumen 430 and extending from the proximal end 440 of the catheter to the hollow section at the distal end 410 of the catheter. Once the distal end 410 of the catheter is positioned as desired, the pusher mechanism 420 is activated and the distal portion of the 10 replacement heart valve device is pushed out of the catheter and the stent member 100 partially expands. In this position the stent member 100 is restrained so that it doesn't pop out and is held for controlled release, with the potential that the replacement heart valve device can be recovered if there is a problem with the positioning. The catheter 400 is then retracted slightly and the replacement heart valve device is completely pushed out of the catheter 400 and released from the catheter to allow the stent member 100 to fully expand. If the stent member 100 preferably includes two circles of barbs on its outer surface as previously described, the first push and retraction will set one circle of barbs in adjacent tissue and the second push and release of the replacement heart valve device will set the other circle of barbs in adjacent tissue and securely fix the replacement heart valve device in place when the device is released from the catheter. Alternatively, or in combination with the above, the replacement heart valve device could be positioned over a metallic guidewire that is advanced through the catheter. The replacement heart valve device of the present invention is preferably implanted percutaneously through an aortic passageway to, or near to, the location from which the natural heart valve has been removed. Referring to FIG. 8, the implantation system comprises a flexible hollow tube catheter 410 with a metallic guide wire 450 disposed within it. The stented valve device is collapsed over the tube and is covered by a moveable sheath 460. The moveable sheath 460 maintains the stented valve device in the collapsed position. The implantation method comprises the following steps: inserting the replacement heart valve device in the lumen of a central blood vessel via entry through the brachial or femoral artery using a needle or exposing the artery surgically; placing a guide wire 450 through the entry vessel and advancing it to the desired
position; advancing dilators over the wire to increase the lumen of the entry site, thereby preparing the artery to receive the heart-valve; and advancing the heartvalve device to the desired place. The stented-valve device is released by pulling the cover sheath 460 of the delivery system allowing the self-expanding stent to achieve its full expansion. A balloon expandable stent can alternately be used to deliver the valve to its desired position. At this point, a pigtail catheter is advanced over the wire and an aortogram is performed to assess the competency of the valve. Before creation of the valve means and implantation, the patient is studied to determine the architecture of the patient's heart. Useful techniques include fluoroscopy, transesophageal echocardiography, MRI, and angiography. The results of this study will enable the physician to determine the appropriate size for the replacement heart valve. In one procedure for implantation of the replacement heart valve device of the present invention, the femoral artery of the patient is canulated using a Cook needle and a standard J wire is advanced into the artery either percutaneously or after surgical exposure of the artery. An 8 F introducer is advanced into the femoral artery over the wire. The J wire is then withdrawn and anticoagulation is started using heparin 60 U/Kg intravenously. Once vascular access is obtained an aortogram is performed for anatomical evaluation. A special wire (Lunderquist or Amplatz superstiff) is advanced into the aortic arch and dilators progressively larger are advanced over the wire, starting with 12 F all the way to 18 F. After this the valve introducer device containing the prosthetic valve device is then inserted and used to transport the replacement valve over a guidewire to the desired position. The stented-valve is released by pulling the cover sheath of the delivery system allowing the self-expanding stent to achieve its full expansion. At this point, a pigtail catheter is advanced over the wire and repeat aortogram is performed to assess the competency of the valve. When the device is used to treat severe leakage of the aortic valve, the native valve is left in place and the prosthetic stented valve is deployed below the subclavian artery. When the device is used to treat aortic stenosis, first the stenotic 15 valve needs to be opened using either aortic valvuloplasty or cutting and if this procedure induces aortic insufficiency the stented valve is placed to prevent the regurgitation. Intravascular ultrasound or an angioscope passed intravascularly via either the venous system through the intra-atrial 20 septum across the mitral valve and into the left ventricle or retrograde via the femoral artery would provide the added benefit of allowing constant high definition imaging of the entire procedure and high flow irrigation. Once the endovascular implantation of the prosthetic valve 25 device is completed in the host, the function of the prosthetic valve device can be monitored by the same methods as used to monitor valve replacements done by open heart surgery. Routine physical examination, periodic echocardiography or angiography can be performed. In contrast to open heart 30 surgery, however, the host requires a short recovery period and can return home within one day of the endovascular procedure. The prosthetic valve device can be used in any patient where bioprosthetic valves are indicated, namely elderly patients with cardiac valve diseases, and patients unable 35 to tolerate open heart procedures or life-long anticoagulation. In addition, with the development of longer-life, flexible, non-thrombogenic synthetic valve alternatives to bioprosthesis, the prosthetic valve device will be indicated in all patients where the relative advantages of the life-span, the non-throm- 40 bogenic quality, and the ease of insertion of prosthetic valve devices outweigh the disadvantages of mechanical valves. Anticoagulation may be beneficial in certain clinical situations for either short or long term use. This method of percutaneous endovascular heart-valve 45 replacement, in contrast to open heart surgical procedures, requires only local anesthesia, partial or no cardiac bypass, one to two days hospitalization, and should result in a reduced mortality rate as compared to open heart procedures. While the present invention has been shown and described 50 herein in what is considered to be a preferred embodiment thereof, illustrating the results and advantages over the prior art obtained through the present invention, the invention is not limited to the specific embodiments described above. Thus, the forms of the invention shown and described herein are to 14 be taken as illustrative and other embodiments may be selected without departing from the spirit and scope of the present invention. Having thus described the invention, what is claimed is: - 1. A method of making a percutaneously implantable replacement heart valve device comprising: - obtaining a sheet of biocompatible tissue material; - cleaning said biocompatible tissue material using distilled water: drying said biocompatible tissue material; after drying said biocompatible tissue material, folding said biocompatible tissue material to form inner leaflets and an outer tubular cuff structure without affixing of separate cusps or leaflets or cutting slits into said biocompatible tissue material to form said inner leaflets; after folding said biocompatible tissue material, affixing said biocompatible tissue material to a stent such that said biocompatible tissue material resides as a single element entirely within an inner channel of said stent, wherein only said inner leaflets reside radially inward from said outer tubular cuff structure; and soaking said biocompatible tissue material in one or more alcohol solutions and a solution of glutaraldehyde. - 2. The method of making a percutaneously implantable replacement heart valve device of claim 1, wherein said biocompatible tissue material comprises bovine pericardium tissue. - 3. The method of making a percutaneously implantable replacement heart valve device of claim 1, wherein said biocompatible tissue material comprises porcine pericardium tissue. - **4**. The method of making a percutaneously implantable replacement heart valve device of claim **1**, wherein said biocompatible tissue material is obtained from a juvenile animal pericardium. - 5. The method of making a percutaneously implantable replacement heart valve device of claim 1, wherein said stent is made of a metal or alloy of metals selected from the group consisting of nickel-titanium alloy, titanium and stainless steel - **6**. The method of making a percutaneously implantable replacement heart valve device of claim **1**, wherein said stent is self-expanding when implanted. - 7. The method of making a percutaneously implantable replacement heart valve device of claim 1, wherein said stent is balloon catheter expandable when implanted. - 8. The method of making a percutaneously implantable replacement heart valve device of claim 1, wherein said cleaning said biocompatible tissue material using distilled water includes using hydromechanical force. - **9**. The method of making a percutaneously implantable replacement heart valve of claim **1**, further comprising gas sterilization of said biocompatible tissue material. * * * * *